Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 9: 839475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35317326

RESUMO

Transfusion of granulocyte concentrates (GC) is an alternative therapy for neutropenic patients with life-threatening infections. While neutrophils are the main source of antimicrobial activity, only neutrophil numbers are used to certify GCs. The objective of this study was thus to functionally characterize neutrophils in GCs prepared by leukapheresis from G-CSF-stimulated donors and compare to the less characterized prednisone GCs. GCs prepared from healthy donors stimulated with prednisone and then G-CSF after a 6-month washout period were analyzed prior to and after leukapheresis, and after storage. Leukocyte composition, neutrophil viability, calcium mobilization, chemotaxis, phagocytosis, reactive oxygen species, cytokine production and metabolites were determined. G-CSF GCs contained significantly more neutrophils than prednisone GCs of which 40% were immature. In comparison to non-stimulated healthy donor neutrophils, prednisone GC neutrophils exhibited enhanced phagocytosis and G-CSF GC neutrophils showed decreased chemotaxis but increased IL-8 production. Leukapheresis altered prednisone GC neutrophil responses. Storage had a significant, negative impact on G-CSF GC neutrophils compared to prednisone GC neutrophils. G-CSF and prednisone GC neutrophils thus differ in maturity and function, and G-CSF GC neutrophils are more sensitive to storage. Functional testing of GC neutrophils and better storage conditions would improve the quality of this blood product.

2.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638548

RESUMO

CLEC12A is a myeloid inhibitory receptor that negatively regulates inflammation in mouse models of autoimmune and autoinflammatory arthritis. Reduced CLEC12A expression enhances myeloid cell activation and inflammation in CLEC12A knock-out mice with collagen antibody-induced or gout-like arthritis. Similarly to other C-type lectin receptors, CLEC12A harbours a stalk domain between its ligand binding and transmembrane domains. While it is presumed that the cysteines in the stalk domain have multimerisation properties, their role in CLEC12A expression and/or signaling remain unknown. We thus used site-directed mutagenesis to determine whether the stalk domain cysteines play a role in CLEC12A expression, internalisation, oligomerisation, and/or signaling. Mutation of C118 blocks CLEC12A transport through the secretory pathway diminishing its cell-surface expression. In contrast, mutating C130 does not affect CLEC12A cell-surface expression but increases its oligomerisation, inducing ligand-independent phosphorylation of the receptor. Moreover, we provide evidence that CLEC12A dimerisation is regulated in a redox-dependent manner. We also show that antibody-induced CLEC12A cross-linking induces flotillin oligomerisation in insoluble membrane domains in which CLEC12A signals. Taken together, these data indicate that the stalk cysteines in CLEC12A differentially modulate this inhibitory receptor's expression, oligomerisation and signaling, suggestive of the regulation of CLEC12A in a redox-dependent manner during inflammation.


Assuntos
Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Multimerização Proteica/genética , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Linhagem Celular Tumoral , Cisteína/metabolismo , Células HEK293 , Células HeLa , Humanos , Inflamação/genética , Lectinas Tipo C/biossíntese , Proteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Fosforilação , Domínios Proteicos/genética , Transporte Proteico/genética , Receptores Mitogênicos/biossíntese , Transdução de Sinais/imunologia
3.
Front Immunol ; 12: 650808, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234773

RESUMO

The myeloid inhibitory C-type lectin receptor CLEC12A limits neutrophil activation, pro-inflammatory pathways and disease in mouse models of inflammatory arthritis by a molecular mechanism that remains poorly understood. We addressed how CLEC12A-mediated inhibitory signaling counteracts activating signaling by cross-linking CLEC12A in human neutrophils. CLEC12A cross-linking induced its translocation to flotillin-rich membrane domains where its ITIM was phosphorylated in a Src-dependent manner. Phosphoproteomic analysis identified candidate signaling molecules regulated by CLEC12A that include MAPKs, phosphoinositol kinases and members of the JAK-STAT pathway. Stimulating neutrophils with uric acid crystals, the etiological agent of gout, drove the hyperphosphorylation of p38 and Akt. Ultimately, one of the pathways through which CLEC12A regulates uric acid crystal-stimulated release of IL-8 by neutrophils is through a p38/PI3K-Akt signaling pathway. In summary this work defines early molecular events that underpin CLEC12A signaling in human neutrophils to modulate cytokine synthesis. Targeting this pathway could be useful therapeutically to dampen inflammation.


Assuntos
Lectinas Tipo C/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores Mitogênicos/imunologia , Transdução de Sinais/imunologia , Adulto , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Células HEK293 , Células HeLa , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Microscopia Confocal , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Pathog Immun ; 6(1): 1-28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33987483

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are intercellular messengers with epigenetic potential since they can shuttle microRNA (miRNA). EVs and miRNA play a role in human immunodeficiency virus (HIV) infection immunopathogenesis. Chronic immune activation and systemic inflammation during HIV infection despite effective antiretroviral therapy (ART) are associated with non-acquired immunodeficiency syndrome (AIDS) comorbidities in people living with HIV (PLWH). Analysis of plasma EVs and their miRNA content may be useful as immune activation or inflammatory biomarkers in PLWH receiving ART. In this study, we hypothesized that the number, size, and miRNA of large and small EVs could reflect immune activation associated with an elevated CD8 T-cell count or a low CD4/CD8 ratio in PLWH. METHODS: Plasma EVs subtype purified from PLWH and uninfected controls were sized using dynamic light scattering and quantified using flow cytometry and acetylcholine esterase (AChE) activity. Expression of mature miRNAs miR-92, miR-155, miR-223 was measured by quantitative reverse-transcriptase polymerase chain reaction in EVs and leucocytes. RESULTS: HIV infection induces increased production of small EVs in plasma. EV subtypes were differentially enriched in miR-92, miR-155, and miR-223. Positive correlations between CD8 T-cell count and large EVs abundance and small EVs AChE activity were observed. CD4/CD8 ratio was negatively correlated with small EV AChE activity, and miRNA-155 level per small EV was negatively correlated with CD8 T-cell count. CONCLUSIONS: These findings suggest that quantifying large or small EVs and profiling miRNA content per EV might provide new functional biomarkers of immune activation and inflammation.

5.
Pathogens ; 10(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925397

RESUMO

Extracellular vesicles (EVs) and their contents (proteins, lipids, messenger RNA, microRNA, and DNA) are viewed as intercellular signals, cell-transforming agents, and shelters for viruses that allow both diagnostic and therapeutic interventions. EVs circulating in the blood of individuals infected with human immunodeficiency virus (HIV-1) may provide insights into pathogenesis, inflammation, and disease progression. However, distinguishing plasma membrane EVs from exosomes, exomeres, apoptotic bodies, virions, and contaminating proteins remains challenging. We aimed at comparing sucrose and iodixanol density and velocity gradients along with commercial kits as a means of separating EVs from HIV particles and contaminating protein like calprotectin; and thereby evaluating the suitability of current plasma EVs analysis techniques for identifying new biomarkers of HIV-1 immune activation. Multiple analysis have been performed on HIV-1 infected cell lines, plasma from HIV-1 patients, or plasma from HIV-negative individuals spiked with HIV-1. Commercial kits, the differential centrifugation and density or velocity gradients to precipitate and separate HIV, EVs, and proteins such as calprotectin, have been used. EVs, virions, and contaminating proteins were characterized using Western blot, ELISA, RT-PCR, hydrodynamic size measurement, and enzymatic assay. Conversely to iodixanol density or velocity gradient, protein and virions co-sedimented in the same fractions of the sucrose density gradient than AChE-positive EVs. Iodixanol velocity gradient provided the optimal separation of EVs from viruses and free proteins in culture supernatants and plasma samples from a person living with HIV (PLWH) or a control and revealed a new population of large EVs enriched in microRNA miR-155 and mitochondrial DNA. Although EVs and their contents provide helpful information about several key events in HIV-1 pathogenesis, their purification and extensive characterization by velocity gradient must be investigated thoroughly before further use as biomarkers. By revealing a new population of EVs enriched in miR-155 and mitochondrial DNA, this study paves a way to increase our understanding of HIV-1 pathogenesis.

6.
Biochem Pharmacol ; 180: 114125, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32598947

RESUMO

BACKGROUND: Colchicine is routinely used for its anti-inflammatory properties to treat gout and Familial Mediterranean fever. More recently, it was also shown to be of therapeutic benefit for another group of diseases in which inflammation is a key component, namely, cardiovascular disease. Whilst there is considerable interest in repurposing this alkaloid, it has a narrow therapeutic index and is associated with undesirable side effects and drug interactions. We, therefore, developed a derivatives of colchicine that preferentially target leukocytes to increase their potency and diminish their side effects. The anti-inflammatory activity of the colchicine derivatives was tested in experimental models of neutrophil activation by the etiological agent of gout, monosodium urate crystals (MSU). METHODS: Using a rational drug design approach, the structure of colchicine was modified to increase its affinity for ßVI-tubulin, a colchicine ligand preferentially expressed by immune cells. The ability of the colchicine analogues with the predicted highest affinity for ßVI-tubulin to dampen neutrophil responses to MSU was determined with in vitro assays that measure MSU-induced production of ROS, release of IL-1 and CXCL8/IL-8, and the increase in the concentration of cytoplasmic calcium. The anti-inflammatory property of the derivatives was assessed in the air pouch model of MSU-induced inflammation in mice. RESULTS: The most effective compound generated, CCI, is more potent than colchicine in all the in vitro assays. It inhibits neutrophil responses to MSU in vitro at concentrations 10-100-fold lower than colchicine. Similarly, in vivo, CCI inhibits the MSU-induced recruitment of leukocytes at a 10-fold lower concentration than colchicine when administered prior to or after MSU. CONCLUSIONS: We provide evidence that colchicine can be rendered more potent atinhibiting MSU-induced neutrophil activation and inflammation using a rational drug design approach. The development of compounds such as CCI will provide more efficacious drugs that will not only alleviate gout patients of their painful inflammatory episodes at significantly lower doses than colchicine, but also be of potential therapeutic benefit for patients with other diseases treated with colchicine.


Assuntos
Anti-Inflamatórios/uso terapêutico , Colchicina/análogos & derivados , Colchicina/uso terapêutico , Gota/tratamento farmacológico , Ativação de Neutrófilo/efeitos dos fármacos , Animais , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Simulação por Computador , Desenho de Fármacos , Gota/imunologia , Humanos , Masculino , Camundongos , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Tubulina (Proteína)/metabolismo
7.
Virology ; 484: 103-112, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26092249

RESUMO

Exosomes are extracellular vesicles (EVs) that play a role in intercellular communication. Stimulation of dendritic cells by the HIV-1 virus triggers their release. HIV-1 binds to dendritic cells via dendritic cell immunoreceptor (DCIR). This study shows that inhibiting the binding to DCIR significantly decreases exosome release by HIV-1-pulsed dendritic cells. In addition, exosome release from Raji-CD4 expressing DCIR cells stimulated by anti-DCIR or HIV-1 is decreased when the immunoreceptor tyrosine-based inhibition motif (ITIM) signaling motif of DCIR is mutated. Unlike the EVs released from Raji-CD4-DCIR cells after antibody stimulation, those released from HIV-1-infected cells contain the pro-apoptotic protein DAP-3. Furthermore, EVs from HIV-1 pulsed dendritic cells increase spontaneous apoptosis in uninfected CD4 T lymphocytes while they decrease it in neutrophils. This study describes for the first time that DCIR plays a role in the release of exosomes strengthening the importance of this receptor and EVs/exosomes in HIV-1 pathogenesis.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Exossomos/metabolismo , HIV-1/fisiologia , Receptores Imunológicos/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , HIV-1/imunologia , Humanos , Ligação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA