Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800140

RESUMO

The problem of vortex shedding, which occurs when an obstacle is placed in a regular flow, is governed by Reynolds and Strouhal numbers, known by dimensional analysis. The present work aims to propose a thin films-based device, consisting of an elastic piezoelectric flapping flag clamped at one end, in order to determine the frequency of vortex shedding downstream an obstacle for a flow field at Reynolds number Re∼103 in the open channel. For these values, Strouhal number obtained in such way is in accordance with the results known in literature. Moreover, the development of the voltage over time, generated by the flapping flag under the load due to flow field, shows a highly fluctuating behavior and satisfies Taylor's law, observed in several complex systems. This provided useful information about the flow field through the constitutive law of the device.

2.
Biomed Opt Express ; 12(2): 993-1010, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33680555

RESUMO

As the scientific community seeks efficient optical neural interfaces with sub-cortical structures of the mouse brain, a wide set of technologies and methods is being developed to monitor cellular events through fluorescence signals generated by genetically encoded molecules. Among these technologies, tapered optical fibers (TFs) take advantage of the modal properties of narrowing waveguides to enable both depth-resolved and wide-volume light collection from scattering tissue, with minimized invasiveness with respect to standard flat fiber stubs (FFs). However, light guided in patch cords as well as in FFs and TFs can result in autofluorescence (AF) signal, which can act as a source of time-variable noise and limit their application to probe fluorescence lifetime in vivo. In this work, we compare the AF signal of FFs and TFs, highlighting the influence of the cladding composition on AF generation. We show that the autofluorescence signal generated in TFs has a peculiar coupling pattern with guided modes, and that far-field detection can be exploited to separate functional fluorescence from AF. On these bases, we provide evidence that TFs can be employed to implement depth-resolved fluorescence lifetime photometry, potentially enabling the extraction of a new set of information from deep brain regions, as time-correlating single photon counting starts to be applied in freely-moving animals to monitor the intracellular biochemical state of neurons.

3.
Opt Express ; 28(15): 21368-21381, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752416

RESUMO

We propose a feedback-assisted direct laser writing method to perform laser ablation of fiber optic devices in which their light-collection signal is used to optimize their properties. A femtosecond-pulsed laser beam is used to ablate a metal coating deposited around a tapered optical fiber, employed to show the suitability of the approach to pattern devices with a small radius of curvature. During processing, the same pulses generate two-photon fluorescence in the surrounding environment and the signal is monitored to identify different patterning regimes over time through spectral analysis. The employed fs beam mostly interacts with the metal coating, leaving almost intact the underlying silica and enabling fluorescence to couple with a specific subset of guided modes, as verified by far-field analysis. Although the method is described here for tapered optical fibers used to obtain efficient light collection in the field of optical neural interfaces, it can be easily extended to other waveguide-based devices and represents a general approach to support the implementation of a closed-loop laser ablation system of fiber optics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA