Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Genetics ; 227(1)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38262680

RESUMO

Echinobase (www.echinobase.org) is a model organism knowledgebase serving as a resource for the community that studies echinoderms, a phylum of marine invertebrates that includes sea urchins and sea stars. Echinoderms have been important experimental models for over 100 years and continue to make important contributions to environmental, evolutionary, and developmental studies, including research on developmental gene regulatory networks. As a centralized resource, Echinobase hosts genomes and collects functional genomic data, reagents, literature, and other information for the community. This third-generation site is based on the Xenbase knowledgebase design and utilizes gene-centric pages to minimize the time and effort required to access genomic information. Summary gene pages display gene symbols and names, functional data, links to the JBrowse genome browser, and orthology to other organisms and reagents, and tabs from the Summary gene page contain more detailed information concerning mRNAs, proteins, diseases, and protein-protein interactions. The gene pages also display 1:1 orthologs between the fully supported species Strongylocentrotus purpuratus (purple sea urchin), Lytechinus variegatus (green sea urchin), Patiria miniata (bat star), and Acanthaster planci (crown-of-thorns sea star). JBrowse tracks are available for visualization of functional genomic data from both fully supported species and the partially supported species Anneissia japonica (feather star), Asterias rubens (sugar star), and L. pictus (painted sea urchin). Echinobase serves a vital role by providing researchers with annotated genomes including orthology, functional genomic data aligned to the genomes, and curated reagents and data. The Echinoderm Anatomical Ontology provides a framework for standardizing developmental data across the phylum, and knowledgebase content is formatted to be findable, accessible, interoperable, and reusable by the research community.


Assuntos
Bases de Dados Genéticas , Equinodermos , Animais , Equinodermos/genética , Genoma , Genômica/métodos , Ouriços-do-Mar/genética , Bases de Conhecimento
2.
Genetics ; 224(1)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36755307

RESUMO

Xenbase (https://www.xenbase.org/), the Xenopus model organism knowledgebase, is a web-accessible resource that integrates the diverse genomic and biological data from research on the laboratory frogs Xenopus laevis and Xenopus tropicalis. The goal of Xenbase is to accelerate discovery and empower Xenopus research, to enhance the impact of Xenopus research data, and to facilitate the dissemination of these data. Xenbase also enhances the value of Xenopus data through high-quality curation, data integration, providing bioinformatics tools optimized for Xenopus experiments, and linking Xenopus data to human data, and other model organisms. Xenbase also plays an indispensable role in making Xenopus data interoperable and accessible to the broader biomedical community in accordance with FAIR principles. Xenbase provides annotated data updates to organizations such as NCBI, UniProtKB, Ensembl, the Gene Ontology consortium, and most recently, the Alliance of Genomic Resources, a common clearing house for data from humans and model organisms. This article provides a brief overview of key and recently added features of Xenbase. New features include processing of Xenopus high-throughput sequencing data from the NCBI Gene Expression Omnibus; curation of anatomical, physiological, and expression phenotypes with the newly created Xenopus Phenotype Ontology; Xenopus Gene Ontology annotations; new anatomical drawings of the Normal Table of Xenopus development; and integration of the latest Xenopus laevis v10.1 genome annotations. Finally, we highlight areas for future development at Xenbase as we continue to support the Xenopus research community.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Humanos , Xenopus laevis/genética , Xenopus/genética , Biologia Computacional
4.
Kidney Int ; 103(1): 23-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603975

RESUMO

Pronephric kidneys have a single large nephron that provides essential osmoregulation in amphibians and fish until the adult kidney forms. As mammalian kidneys evolved from the simple pronephric kidneys of the early vertebrates, understanding the structure and function of pronephroi gives insight into the blueprints underlying all nephrons. The article in this issue by Corkins et al. uses single-cell sequencing to demonstrate an extraordinary segmental complexity and the organizational roadmap that mammalian nephrons are based upon.


Assuntos
Néfrons , Pronefro , Animais , Rim , Mamíferos
5.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35833709

RESUMO

Normal tables of development are essential for studies of embryogenesis, serving as an important resource for model organisms, including the frog Xenopus laevis. Xenopus has long been used to study developmental and cell biology, and is an increasingly important model for human birth defects and disease, genomics, proteomics and toxicology. Scientists utilize Nieuwkoop and Faber's classic 'Normal Table of Xenopus laevis (Daudin)' and accompanying illustrations to enable experimental reproducibility and reuse the illustrations in new publications and teaching. However, it is no longer possible to obtain permission for these copyrighted illustrations. We present 133 new, high-quality illustrations of X. laevis development from fertilization to metamorphosis, with additional views that were not available in the original collection. All the images are available on Xenbase, the Xenopus knowledgebase (http://www.xenbase.org/entry/zahn.do), for download and reuse under an attributable, non-commercial creative commons license. Additionally, we have compiled a 'Landmarks Table' of key morphological features and marker gene expression that can be used to distinguish stages quickly and reliably (https://www.xenbase.org/entry/landmarks-table.do). This new open-access resource will facilitate Xenopus research and teaching in the decades to come.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Humanos , Metamorfose Biológica , Reprodutibilidade dos Testes , Xenopus laevis/genética
6.
PLoS One ; 17(5): e0267932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35551281

RESUMO

In this report we describe the embryogenesis of the bay pipefish, Syngnathus leptorhynchus, and the organogenesis of its aglomerular kidney. Early development was analyzed via a series of montages and images documenting embryos collected from the brood pouches of pregnant males. Despite differences in terminal morphology between pipefish and common teleost models such as medaka and zebrafish, the embryogenesis of these highly advanced fishes is generally similar to that of other fishes. One of the unique features of these fishes is their utilization of an aglomerular kidney. Histological analysis revealed a single long, unbranched kidney tubule in late embryos. The development and structure of this organ was further investigated by cloning the sodium potassium ATPase alpha subunit, atp1a, from S. leptorhynchus and developing whole mount fluorescent in situ hybridization protocols for embryos of this species. Fluorescent stereoscopic and confocal visualization techniques were then used to characterize the 3D morphology of aglomerular kidneys in intact embryos. In all embryonic stages characterized, the aglomerular kidney is a single unbranched tube extending from just behind the head to the cloaca.


Assuntos
Smegmamorpha , Peixe-Zebra , Animais , Baías , Hibridização in Situ Fluorescente , Rim , Masculino , Organogênese , Smegmamorpha/genética
7.
BMC Bioinformatics ; 23(1): 99, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317743

RESUMO

BACKGROUND: Ontologies of precisely defined, controlled vocabularies are essential to curate the results of biological experiments such that the data are machine searchable, can be computationally analyzed, and are interoperable across the biomedical research continuum. There is also an increasing need for methods to interrelate phenotypic data easily and accurately from experiments in animal models with human development and disease. RESULTS: Here we present the Xenopus phenotype ontology (XPO) to annotate phenotypic data from experiments in Xenopus, one of the major vertebrate model organisms used to study gene function in development and disease. The XPO implements design patterns from the Unified Phenotype Ontology (uPheno), and the principles outlined by the Open Biological and Biomedical Ontologies (OBO Foundry) to maximize interoperability with other species and facilitate ongoing ontology management. Constructed in Web Ontology Language (OWL) the XPO combines the existing uPheno library of ontology design patterns with additional terms from the Xenopus Anatomy Ontology (XAO), the Phenotype and Trait Ontology (PATO) and the Gene Ontology (GO). The integration of these different ontologies into the XPO enables rich phenotypic curation, whilst the uPheno bridging axioms allows phenotypic data from Xenopus experiments to be related to phenotype data from other model organisms and human disease. Moreover, the simple post-composed uPheno design patterns facilitate ongoing XPO development as the generation of new terms and classes of terms can be substantially automated. CONCLUSIONS: The XPO serves as an example of current best practices to help overcome many of the inherent challenges in harmonizing phenotype data between different species. The XPO currently consists of approximately 22,000 terms and is being used to curate phenotypes by Xenbase, the Xenopus Model Organism Knowledgebase, forming a standardized corpus of genotype-phenotype data that can be directly related to other uPheno compliant resources.


Assuntos
Ontologias Biológicas , Animais , Ontologia Genética , Humanos , Fenótipo , Xenopus laevis
8.
Nucleic Acids Res ; 50(D1): D970-D979, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34791383

RESUMO

Echinobase (www.echinobase.org) is a third generation web resource supporting genomic research on echinoderms. The new version was built by cloning the mature Xenopus model organism knowledgebase, Xenbase, refactoring data ingestion pipelines and modifying the user interface to adapt to multispecies echinoderm content. This approach leveraged over 15 years of previous database and web application development to generate a new fully featured informatics resource in a single year. In addition to the software stack, Echinobase uses the private cloud and physical hosts that support Xenbase. Echinobase currently supports six echinoderm species, focused on those used for genomics, developmental biology and gene regulatory network analyses. Over 38 000 gene pages, 18 000 publications, new improved genome assemblies, JBrowse genome browser and BLAST + services are available and supported by the development of a new echinoderm anatomical ontology, uniformly applied formal gene nomenclature, and consistent orthology predictions. A novel feature of Echinobase is integrating support for multiple, disparate species. New genomes from the diverse echinoderm phylum will be added and supported as data becomes available. The common code development design of the integrated knowledgebases ensures parallel improvements as each resource evolves. This approach is widely applicable for developing new model organism informatics resources.


Assuntos
Bases de Dados Genéticas , Equinodermos/genética , Redes Reguladoras de Genes , Genoma , Interface Usuário-Computador , Animais , Equinodermos/classificação , Genômica , Internet , Bases de Conhecimento , Anotação de Sequência Molecular , Filogenia , Xenopus/genética
9.
Database (Oxford) ; 20212021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34585729

RESUMO

A keyword-based search of comprehensive databases such as PubMed may return irrelevant papers, especially if the keywords are used in multiple fields of study. In such cases, domain experts (curators) need to verify the results and remove the irrelevant articles. Automating this filtering process will save time, but it has to be done well enough to ensure few relevant papers are rejected and few irrelevant papers are accepted. A good solution would be fast, work with the limited amount of data freely available (full paper body may be missing), handle ambiguous keywords and be as domain-neutral as possible. In this paper, we evaluate a number of classification algorithms for identifying a domain-specific set of papers about echinoderm species and show that the resulting tool satisfies most of the abovementioned requirements. Echinoderms consist of a number of very different organisms, including brittle stars, sea stars (starfish), sea urchins and sea cucumbers. While their taxonomic identifiers are specific, the common names are used in many other contexts, creating ambiguity and making a keyword search prone to error. We try classifiers using Linear, Naïve Bayes, Nearest Neighbor, Tree, SVM, Bagging, AdaBoost and Neural Network learning models and compare their performance. We show how effective the resulting classifiers are in filtering irrelevant articles returned from PubMed. The methodology used is more dependent on the good selection of training data and is a practical solution that can be applied to other fields of study facing similar challenges. Database URL: The code and date reported in this paper are freely available at http://xenbaseturbofrog.org/pub/Text-Topic-Classifier/.


Assuntos
Algoritmos , Equinodermos , Animais , Teorema de Bayes , Bases de Dados Factuais , PubMed
10.
Database (Oxford) ; 20212021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34010390

RESUMO

Echinobase (https://echinobase.org) is a central online platform that generates, manages and hosts genomic data relevant to echinoderm research. While the resource primarily serves the echinoderm research community, the recent release of an excellent quality genome for the frequently studied purple sea urchin (Strongylocentrotus purpuratus genome, v5.0) has provided an opportunity to adapt to the needs of a broader research community across other model systems. To this end, establishing pipelines to identify orthologous genes between echinoderms and other species has become a priority in many contexts including nomenclature, linking to data in other model organisms, and in internal functionality where data gathered in one hosted species can be associated with genes in other hosted echinoderms. This paper describes the orthology pipelines currently employed by Echinobase and how orthology data are processed to yield 1:1 ortholog mappings between a variety of echinoderms and other model taxa. We also describe functions of interest that have recently been included on the resource, including an updated developmental time course for S.purpuratus, and additional tracks for genome browsing. These data enhancements will increase the accessibility of the resource to non-echinoderm researchers and simultaneously expand the data quality and quantity available to core Echinobase users. Database URL: https://echinobase.org.


Assuntos
Equinodermos , Genoma , Animais , Bases de Dados Factuais , Bases de Dados Genéticas , Equinodermos/genética , Genômica
11.
Nucleic Acids Res ; 48(D1): D776-D782, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31733057

RESUMO

Xenbase (www.xenbase.org) is a knowledge base for researchers and biomedical scientists that employ the amphibian Xenopus as a model organism in biomedical research to gain a deeper understanding of developmental and disease processes. Through expert curation and automated data provisioning from various sources Xenbase strives to integrate the body of knowledge on Xenopus genomics and biology together with the visualization of biologically significant interactions. Most current studies utilize next generation sequencing (NGS) but until now the results of different experiments were difficult to compare and not integrated with other Xenbase content. Xenbase has developed a suite of tools, interfaces and data processing pipelines that transforms NCBI Gene Expression Omnibus (GEO) NGS content into deeply integrated gene expression and chromatin data, mapping all aligned reads to the most recent genome builds. This content can be queried and visualized via multiple tools and also provides the basis for future automated 'gene expression as a phenotype' and gene regulatory network analyses.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes/genética , Genômica , Software , Xenopus/genética , Animais , Sequenciamento de Cromatina por Imunoprecipitação , Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA-Seq , Interface Usuário-Computador
12.
Mol Ecol ; 28(16): 3629-3641, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31294494

RESUMO

Rhythms of various periodicities drive cyclical processes in organisms ranging from single cells to the largest mammals on earth, and on scales from cellular physiology to global migrations. The molecular mechanisms that generate circadian behaviours in model organisms have been well studied, but longer phase cycles and interactions between cycles with different periodicities remain poorly understood. Broadcast spawning corals are one of the best examples of an organism integrating inputs from multiple environmental parameters, including seasonal temperature, the lunar phase and hour of the day, to calibrate their annual reproductive event. We present a deep RNA-sequencing experiment utilizing multiple analyses to differentiate transcriptomic responses modulated by the interactions between the three aforementioned environmental parameters. Acropora millepora was sampled over multiple 24-hr periods throughout a full lunar month and at two seasonal temperatures. Temperature, lunar and diurnal cycles produce distinct transcriptomic responses, with interactions between all three variables identifying a core set of genes. These core genes include mef2, a developmental master regulator, and two heterogeneous nuclear ribonucleoproteins, one of which is known to post-transcriptionally interact with mef2 and with biological clock-regulating mRNAs. Interactions between diurnal and temperature differences impacted a range of core processes ranging from biological clocks to stress responses. Genes involved with developmental processes and transcriptional regulation were impacted by the lunar phase and seasonal temperature differences. Lastly, there was a diurnal and lunar phase interaction in which genes involved with RNA-processing and translational regulation were differentially regulated. These data illustrate the extraordinary levels of transcriptional variation across time in a simple radial cnidarian in response to the environment under normal conditions.


Assuntos
Antozoários/genética , Ritmo Circadiano , Lua , Estações do Ano , Temperatura , Animais , Antozoários/fisiologia , Austrália , Relógios Biológicos/genética , Regulação da Expressão Gênica , Reprodução , Transcriptoma
13.
Front Physiol ; 10: 154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863320

RESUMO

At a fundamental level most genes, signaling pathways, biological functions and organ systems are highly conserved between man and all vertebrate species. Leveraging this conservation, researchers are increasingly using the experimental advantages of the amphibian Xenopus to model human disease. The online Xenopus resource, Xenbase, enables human disease modeling by curating the Xenopus literature published in PubMed and integrating these Xenopus data with orthologous human genes, anatomy, and more recently with links to the Online Mendelian Inheritance in Man resource (OMIM) and the Human Disease Ontology (DO). Here we review how Xenbase supports disease modeling and report on a meta-analysis of the published Xenopus research providing an overview of the different types of diseases being modeled in Xenopus and the variety of experimental approaches being used. Text mining of over 50,000 Xenopus research articles imported into Xenbase from PubMed identified approximately 1,000 putative disease- modeling articles. These articles were manually assessed and annotated with disease ontologies, which were then used to classify papers based on disease type. We found that Xenopus is being used to study a diverse array of disease with three main experimental approaches: cell-free egg extracts to study fundamental aspects of cellular and molecular biology, oocytes to study ion transport and channel physiology and embryo experiments focused on congenital diseases. We integrated these data into Xenbase Disease Pages to allow easy navigation to disease information on external databases. Results of this analysis will equip Xenopus researchers with a suite of experimental approaches available to model or dissect a pathological process. Ideally clinicians and basic researchers will use this information to foster collaborations necessary to interrogate the development and treatment of human diseases.

14.
Evol Bioinform Online ; 14: 1176934318788866, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038485

RESUMO

With the advent of whole transcriptome and genome analysis methods, classifying samples containing multiple origins has become a significant task. Nucleotide sequences can be allocated to a genome or transcriptome by aligning sequences to multiple target sequence sets, but this approach requires extensive computational resources and also depends on target sequence sets lacking contaminants, which is often not the case. Here, we demonstrate that raw sequences can be rapidly sorted into groups, in practice corresponding to genera, by exploiting differences in nucleotide GC content. To do so, we introduce GCSpeciesSorter, which uses classification, specifically Support Vector Machines (SVM) and the C4.5 decision tree generator, to differentiate sequences. It also implements a secondary BLAST feature to identify known outliers. In the test case presented, a hermatypic coral holobiont, the cnidarian host includes various endosymbionts. The best characterized and most common of these symbionts are zooxanthellae of the genus Symbiodinium. GCSpeciesSorter separates cnidarian from Symbiodinium sequences with a high degree of accuracy. We show that if the GC contents of the species differ enough, this method can be used to accurately distinguish the sequences of different species when using high-throughput sequencing technologies.

15.
Methods Mol Biol ; 1757: 251-305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29761462

RESUMO

Xenbase is the Xenopus model organism database ( www.xenbase.org ), a web-accessible resource that integrates the diverse genomic and biological data for Xenopus research. It hosts a variety of content including current and archived genomes for both X. laevis and X. tropicalis, bioinformatic tools for comparative genetic analyses including BLAST and GBrowse, annotated Xenopus literature, and catalogs of reagents including antibodies, ORFeome clones, morpholinos, and transgenic lines. Xenbase compiles gene-specific pages which include manually curated gene expression images, functional information including gene ontology (GO), disease associations, and links to other major data sources such as NCBI:Entrez, UniProtKB, and Ensembl. We also maintain the Xenopus Anatomy Ontology (XAO) which describes anatomy throughout embryonic development. This chapter provides a full description of the many features of Xenbase, and offers a guide on how to use various tools to perform a variety of common tasks such as identifying nucleic acid or protein sequences, finding gene expression patterns for specific genes, stages or tissues, identifying literature on a specific gene or tissue, locating useful reagents and downloading our extensive content, including Xenopus gene-Human gene disease mapping files.


Assuntos
Bases de Dados Genéticas , Expressão Gênica , Genoma , Genômica , Xenopus laevis/genética , Animais , Biologia Computacional/métodos , Ontologia Genética , Genômica/métodos , Software , Interface Usuário-Computador , Navegador
16.
Mar Genomics ; 40: 9-12, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32420879

RESUMO

Stony corals from the genus Acropora are widely distributed, important reef-builders and have become increasingly utilized for investigating links between genetics and spawning behaviour. We assembled and annotated a composite transcriptome from Acropora gemmifera using Illumina HiSeq2500 analysis of two libraries from different lunar and solar phases to identify genes that have potential functional roles in reproductive-related traits. A total of 31.6 million combined raw reads were assembled using Trinity and built into 104,000 contigs. Functional gene annotation was performed using dammit, Gene Ontology (GO), KOG (WebMGA) and KEGG pathway analyses (Kaas). This resource will be valuable for researchers studying gene expression patterns in coral reproductive cycles and evolution of the genus Acropora.

17.
Nucleic Acids Res ; 46(D1): D861-D868, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29059324

RESUMO

Xenbase (www.xenbase.org) is an online resource for researchers utilizing Xenopus laevis and Xenopus tropicalis, and for biomedical scientists seeking access to data generated with these model systems. Content is aggregated from a variety of external resources and also generated by in-house curation of scientific literature and bioinformatic analyses. Over the past two years many new types of content have been added along with new tools and functionalities to reflect the impact of high-throughput sequencing. These include new genomes for both supported species (each with chromosome scale assemblies), new genome annotations, genome segmentation, dynamic and interactive visualization for RNA-Seq data, updated ChIP-Seq mapping, GO terms, protein interaction data, ORFeome support, and improved connectivity to other biomedical and bioinformatic resources.


Assuntos
Bases de Dados Genéticas , Epigenômica , Genoma , Transcriptoma , Xenopus/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Imunoprecipitação da Cromatina , Biologia Computacional/organização & administração , Bases de Dados de Ácidos Nucleicos , Ontologia Genética , Genômica , MicroRNAs/genética , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética , RNA/genética , Software , Interface Usuário-Computador , Navegador , Xenopus laevis/genética
18.
Mol Ecol ; 26(9): 2514-2526, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28141890

RESUMO

On one night per year, at a specific point in the lunar cycle, one of the most extraordinary reproductive events on the planet unfolds as hundreds of millions of broadcast spawning corals release their trillions of gametes into the waters of the tropical seas. Each species spawns on a specific night within the lunar cycle, typically from full moon to third quarter moon, and in a specific time window after sunset. This accuracy is essential to achieve efficient fertilization in the vastness of the oceans. In this report, we use transcriptome sequencing at noon and midnight across an entire lunar cycle to explore how acroporid corals interpret lunar signals. The data were interrogated by both time-of-day-dependent and time-of-day-independent methods to identify different types of lunar cycles. Time-of-day methods found that genes associated with biological clocks and circadian processes change their diurnal cycles over the course of a synodic lunar cycle. Some genes have large differences between day and night at some lunar phases, but little or no diurnal differences at other phases. Many clock genes display an oscillation pattern indicative of phase shifts linked to the lunar cycle. Time-independent methods found that signal transduction, protein secretion and modification, cell cycle and ion transport change over the lunar timescale and peak at various phases of the moon. Together these data provide unique insights into how the moon impinges on coral transcription cycles and how lunar light may regulate circalunar timing systems and coral biology.


Assuntos
Antozoários/fisiologia , Relógios Biológicos/genética , Lua , Transcriptoma , Animais , Proteínas CLOCK/genética , Luz
19.
Dev Biol ; 426(2): 194-199, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27039265

RESUMO

The two species of Xenopus most commonly used in biomedical research are the diploid Xenopus (Silurana) tropicalis and the tetraploid Xenopus laevis. The X. tropicalis genome sequence has been available since 2010 and this year the X. laevis, genome from two distinct genetic backgrounds has been published. Multiple genome assemblies available for both species and transcriptomic and epigenetic data sets are growing rapidly, all of which are available from a variety of web resources. This review describes the contents of these resources, how to locate and download genomic data, and also how to view and manipulate these data on various public genome browsers, with an emphasis on Xenbase, the Xenopus model organism database.


Assuntos
Bases de Dados Genéticas , Genoma , Genômica/métodos , Navegador , Xenopus/genética , Animais , Expressão Gênica , Microcomputadores , Terminologia como Assunto , Xenopus laevis/genética
20.
Biol Bull ; 230(2): 130-42, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27132135

RESUMO

Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks.


Assuntos
Antozoários/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Luz , Lua , Animais , Ritmo Circadiano/efeitos da radiação , Meio Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA