Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241277

RESUMO

The deposition of low-adhesive siloxane coatings is a current trend for the non-toxic control of bacterial growth and biofilm formation. Total elimination of biofilm formation has not been reported so far. The aim of this investigation was to study the ability of a non-toxic, natural, biologically active substance, such as fucoidan, to inhibit bacterial growth on similar medical coatings. The fucoidan amount was varied, and its impact on the bioadhesion-influencing surface characteristics, as well as on bacterial cell growth, was investigated. The inclusion of up to 3-4 wt.% brown algae-derived fucoidan in the coatings increases their inhibitory effect, more significantly on the Gram-positive bacterium S. aureus than on the Gram-negative bacterium Escherichia coli. The biological activity of the studied siloxane coatings was ascribed to the formation of a low-adhesive, biologically active surface top layer consisting of siloxane oil and dispersed water-soluble fucoidan particles. This is the first report on the antibacterial activity of fucoidan-containing medical siloxane coatings. The experimental results give reason to expect that relevantly selected, natural biologically active substances can be efficient in the non-toxic control of bacterial growth on medical devices and, as a result, medical device-associated infections.

2.
Materials (Basel) ; 15(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806655

RESUMO

No systematic study of antioxidant containing coatings and their anti-biofilm action has been reported so far. The utilization of antioxidants in protective coatings to inhibit marine biofilm formation is a current challenge. The aim of this preliminary study was to prepare, characterize and compare the efficiency of low adhesive siloxane composite coatings equally loaded with different antioxidants against mono-species biofilms formation. Most often participating in the marine biofilms formation, Marinobacter hydrocarbonoclasticus was the test bacterium. Both the biofilm covered surface area (BCSA) and corrected total cell fluorescence (CTCF) (by fluorescent microscopy) were selected as the parameters for quantification of the biofilm after 1 h and 4 h incubation. Differing extents of altered surface characteristics (physical-chemical; physical-mechanical) and the specific affection of M. hydrocarbonoclasticus biofilm formation in both reduction and stimulation, were found in the studied antioxidant containing coatings, depending on the chemical nature of the used antioxidant. It was concluded that not all antioxidants reduce mono-species biofilm formation; antioxidant chemical reactivity stipulates the formation of an altered vulcanization network of the siloxane composites and thus microbial adhesion which influences the surface characteristics of the vulcanized coatings; and low surface energy combined with a low indentation elastic modulus are probably pre-requisites of low microbial adhesion.

3.
Antioxidants (Basel) ; 11(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35326090

RESUMO

BACKGROUND: The well-recognized but not fully explored antioxidant activity of marine-biota-derived, biologically active substances has led to interest in their study as substitutes of antibiotics, antiaging agents, anticancer and antiviral drugs, and others. The aim of this review is to present the current state of the art of marine-biota-derived antioxidants to give some ideas for potential industrial applications. METHODS: This review is an update for the last 5 years on the marine sources of natural antioxidants, different classes antioxidant compounds, and current derivation biotechnologies. RESULTS: New marine sources of antioxidants, including byproducts and wastes, are presented, along with new antioxidant substances and derivation approaches. CONCLUSIONS: The interest in high-value antioxidants from marine biota continues. Natural substances combining antioxidant and antimicrobial action are of particular interest because of the increasing microbial resistance to antibiotic treatments. New antioxidant substances are discovered, along with those extracted from marine biota collected in other locations. Byproducts and wastes provide a valuable source of antioxidant substances. The application of optimized non-conventional derivation approaches is expected to allow the intensification of the production and improvement in the quality of the derived substances. The ability to obtain safe, high-value products is of key importance for potential industrialization.

4.
Microorganisms ; 9(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34576733

RESUMO

Microbial adhesion and biofilm formation is a common, nondesirable phenomenon at any living or nonliving material surface in contact with microbial species. Despite the enormous efforts made so far, the protection of material surfaces against microbial adhesion and biofilm formation remains a significant challenge. Deposition of antimicrobial coatings is one approach to mitigate the problem. Examples of such are those based on heparin, cationic polymers, antimicrobial peptides, drug-delivering systems, and other coatings, each one with its advantages and shortcomings. The increasing microbial resistance to the conventional antimicrobial treatments leads to an increasing necessity for new antimicrobial agents, among which is a variety of carbon nanomaterials. The current review paper presents the last 5 years' progress in the development of graphene antimicrobial materials and graphene-based antimicrobial coatings that are among the most studied. Brief information about the significance of the biofouling, as well as the general mode of development and composition of microbial biofilms, are included. Preparation, antibacterial activity, and bactericidal mechanisms of new graphene materials, deposition techniques, characterization, and parameters influencing the biological activity of graphene-based coatings are focused upon. It is expected that this review will raise some ideas for perfecting the composition, structure, antimicrobial activity, and deposition techniques of graphene materials and coatings in order to provide better antimicrobial protection of medical devices.

5.
J Biomed Mater Res A ; 107(12): 2619-2628, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31376316

RESUMO

Myogenic differentiation during muscle regeneration is guided by various physical and biochemical factors. Recently, substratum elasticity has gained attention as a physical signal that influences both cell differentiation and tissue regeneration. In this work, we investigated the influence of substratum elasticity on proliferation and differentiation of myogenic cells, mouse myoblasts of the C2C12 cell line and mouse primary myoblasts derived from satellite cells-muscle stem cells playing key role in muscle regeneration. Materials with different elastic moduli within the MPa scale based on polydimethylsiloxane (PDMS) were used as cell substratum and characterized for surface roughness, wettability, and micromechanical characteristics. We found that surface properties of PDMS substrates are alter nonlinearly with the increase of the material's elastic modulus. Using this system we provide an evidence that materials with elastic modulus higher than that of physiological skeletal muscle tissue do not perturb myogenic differentiation of both types of myoblasts; thus, can be used as biomaterials for muscle tissue engineering. PDMS materials with elasticity within the range of 2.5-4 MPa may transiently limit the proliferation of myoblasts, but not the efficiency of their differentiation. Direct correlation between substratum elasticity and myogenic differentiation efficiency was not observed but the other surface properties of the PDMS materials such as nanoroughness and wettability were also diverse.


Assuntos
Materiais Biocompatíveis/química , Dimetilpolisiloxanos/química , Desenvolvimento Muscular , Mioblastos/citologia , Animais , Diferenciação Celular , Linhagem Celular , Módulo de Elasticidade , Camundongos , Propriedades de Superfície , Alicerces Teciduais/química
6.
Macromol Biosci ; 19(5): e1800384, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30884146

RESUMO

In Europe, the mean incidence of urinary tract infections in intensive care units is 1.1 per 1000 patient-days. Of these cases, catheter-associated urinary tract infections (CAUTI) account for 98%. In total, CAUTI in hospitals is estimated to give additional health-care costs of £1-2.5 billion in the United Kingdom alone. This is in sharp contrast to the low cost of urinary catheters and emphasizes the need for innovative products that reduce the incidence rate of CAUTI. Ureteral stents and other urinary-tract devices suffer similar problems. Antimicrobial strategies are being developed, however, the evaluation of their efficacy is very challenging. This review aims to provide considerations and recommendations covering all relevant aspects of antimicrobial material testing, including surface characterization, biocompatibility, cytotoxicity, in vitro and in vivo tests, microbial strain selection, and hydrodynamic conditions, all in the perspective of complying to the complex pathology of device-associated urinary tract infection. The recommendations should be on the basis of standard assays to be developed which would enable comparisons of results obtained in different research labs both in industry and in academia, as well as provide industry and academia with tools to assess the antimicrobial properties for urinary tract devices in a reliable way.


Assuntos
Antibacterianos , Infecções Relacionadas a Cateter/prevenção & controle , Infecções Urinárias/prevenção & controle , Sistema Urinário , Antibacterianos/química , Antibacterianos/uso terapêutico , Feminino , Humanos , Masculino
7.
Appl Biochem Biotechnol ; 180(1): 177-93, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27138724

RESUMO

The aim of this investigation was to develop new antimicrobial collagen/zinc titanate (ZnTiO3) biomaterials using a sol-gel cryogenic draying technology in keeping the native collagen activity. Broad-spectrum antimicrobial activity was demonstrated against Firmicutes (Staphylococcus epidermidis, Bacillus cereus, and Candida lusitaniae) and Gracilicutes (Escherichia coli, Salmonella enterica, and Pseudomonas putida) microorganisms. The antimicrobial activity as well as the cytotoxicity were specific for the different test microorganisms (Gram-positive and Gram-negative bacteria and fungi) and model eukaryotic cells (osteosarcoma, fibroblast, and keratinocyte cells), respectively, and both were depending on the ZnTiO3 concentration. Three mechanisms of the antimicrobial action were supposed, including (i) mechanical demolition of the cell wall and membrane by the crystal nanoparticles of the ZnTiO3 entrapped in the collagen matrix, (ii) chelation of its metal ions, and (iii) formation of free oxygen radicals due to the interaction between the microbial cells and antimicrobial agent. It was concluded that the optimal balance between antimicrobial activity and cytotoxicity could be achieved by a variation of the ZnTiO3 concentration. The antifungal and broad-spectrum antibacterial activity of the studied collagen/ZnTiO3 nanocomposites, combined with a low cytotoxicity, makes them a promising anti-infection biomaterial.


Assuntos
Colágeno/farmacologia , Nanocompostos/química , Titânio/farmacologia , Zinco/farmacologia , Células 3T3 , Animais , Antibacterianos/farmacologia , Bovinos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Colágeno/ultraestrutura , Escherichia coli/enzimologia , Humanos , Hidrólise , Camundongos , Testes de Sensibilidade Microbiana , Nanopartículas/química , Oxirredutases/metabolismo , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Coloração e Rotulagem , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA