Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Appl Opt ; 60(27): 8426-8434, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612942

RESUMO

Thin, wavy ribbons of light known as "shadow bands" can be seen moving and undulating on the ground just preceding and following the occurrence of a total solar eclipse. Using the scattering scintillation theory, Codona [Astron. Astrophys.164, 415 (1986)AAEJAF0004-6361] presented theoretical investigations that explain recorded features of shadow bands and suggest the turbulence mainly responsible for the bands is within the bottom 2-3 km of the atmosphere. This paper proposes an approach to model the shadow band phenomena using a numerical wave optics simulation. The simulation approach employs numerical wave optics techniques to model a crescent-shape source, propagation of component plane waves through turbulence phase screens, and observation of the light at the ground. The simulation produces intensity patterns with structures and evolution that are consistent with actual shadow band observations and Codona's theory. The contribution of the turbulence phase screens as a function of height to the shadow band intensity scintillation index is simulated and excellent correspondence is found with the theory. Finally, the practical utility of the simulation is illustrated by creating intensity frames that show the temporal evolution of the patterns due to wind. The simulation approach is adaptable and can be applied to scintillation and imaging problems involving other incoherent objects or sources that subtend relatively large angles and are observed through atmospheric turbulence.

2.
Opt Express ; 29(4): 5327-5342, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726071

RESUMO

This paper presents a channel analysis method for single and double scattering events in non-line-of-sight (NLOS) ultraviolet (UV) communication systems. In general, the calculations of path loss and impulse response of such systems require Monte Carlo random number generations. However, the high computational costs of Monte Carlo methods impose severe limitations on quick reliable evaluations of system performance under complex atmospheric conditions. This paper proposes a sample-based UV channel characterization approach that improves computational performance by multiple orders of magnitude. The proposed novel approach uses fixed probability-based sampling. The method focuses only on single and double scattering events which dominate the received signal. The effects of various fog and dust aerosols are discussed under non-planar realistic conditions. The results demonstrate reliable channel characterization with significantly lower complexity using the proposed approach.

3.
Opt Express ; 27(20): 28832-28843, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684628

RESUMO

A modified pBRDF model with a diffuse scattering component is applied to estimate the complex refractive index, slope variance roughness, and diffuse scattering coefficients of object surfaces from time sequences of polarimetric images. The approach is used for the first time to produce parameter-based images from multispectral Stokes imagery of outdoor target scenes collected by the Ground Multiangle Spectro-Polarimetric Imager. The images of the estimated surface parameters show distinctions between different objects in the scenes and the parameter values are consistent with reasonable expectations for the object surfaces.

4.
Opt Lett ; 44(23): 5719-5722, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774762

RESUMO

We develop a method to generate electromagnetic nonuniformly correlated (ENUC) sources from vector Gaussian Schell-model (GSM) beams. Having spatially varying correlation properties, ENUC sources are more difficult to synthesize than their Schell-model counterparts (which can be generated by filtering circular complex Gaussian random numbers) and, in past work, have only been realized using Cholesky decomposition-a computationally intensive procedure. Here we transform electromagnetic GSM field instances directly into ENUC instances, thereby avoiding computing Cholesky factors resulting in significant savings in time and computing resources. We validate our method by generating (via simulation) an ENUC beam with desired parameters. We find the simulated results to be in excellent agreement with the theoretical predictions. This new method for generating ENUC sources can be directly implemented on existing spatial-light-modulator-based vector beam generators and will be useful in applications where nonuniformly correlated beams have shown promise, e.g., free-space/underwater optical communications.

5.
Astrobiology ; 17(12): 1203-1218, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29227156

RESUMO

The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques. Key Words: Biosignature suites-Caves-Mars-Life detection. Astrobiology 17, 1203-1218.


Assuntos
Carbonato de Cálcio/análise , Exobiologia/instrumentação , Meio Ambiente Extraterreno , Vida , Análise Espectral/instrumentação , Carbonato de Cálcio/química , Cavernas , Estudos de Viabilidade , Análise Espectral/métodos
6.
Opt Express ; 25(4): 3656-3665, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241578

RESUMO

In a previous paper [Opt. Express22, 31691 (2014)] two different wave optics methodologies (phase screen and complex screen) were introduced to generate electromagnetic Gaussian Schell-model sources. A numerical optimization approach based on theoretical realizability conditions was used to determine the screen parameters. In this work we describe a practical modeling approach for the two methodologies that employs a common numerical recipe for generating correlated Gaussian random sequences and establish exact relationships between the screen simulation parameters and the source parameters. Both methodologies are demonstrated in a wave-optics simulation framework for an example source. The two methodologies are found to have some differing features, for example, the phase screen method is more flexible than the complex screen in terms of the range of combinations of beam parameter values that can be modeled. This work supports numerical wave optics simulations or laboratory experiments involving electromagnetic Gaussian Schell-model sources.

7.
Appl Opt ; 55(30): 8523-8531, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27828131

RESUMO

Turbulence poses challenges in many atmospheric and underwater surveillance applications. The compressive line sensing (CLS) active imaging scheme has been demonstrated in simulations and test tank experiments to be effective in scattering media such as turbid coastal water, fog, and mist. The CLS sensing model adopts the distributed compressive sensing theoretical framework that exploits both intrasignal sparsity and the highly correlated nature of adjacent areas in a natural scene. During sensing operation, the laser illuminates the spatial light modulator digital micromirror device to generate a series of one-dimensional binary sensing patterns from a codebook to encode the current target line segment. A single element detector photomultiplier tube acquires target reflections as the encoder output. The target can then be recovered using the encoder output and a predicted on-target codebook that reflects the environmental interference of original codebook entries. In this work, we investigated the effectiveness of the CLS imaging system in a turbulent environment. The development of a compact CLS prototype will be discussed, as will a series of experiments using various turbulence intensities at the Naval Research Lab's Simulated Turbulence and Turbidity Environment. The experimental results showed that the time-averaged measurements improved both the signal-to-noise radio and the resolution of the reconstructed image in the extreme turbulence environment. The contributing factors for this intriguing and promising result will be discussed.

8.
Appl Opt ; 55(15): 4079-84, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27411135

RESUMO

Experimental and theoretical work has shown that atmospheric turbulence can exhibit "non-Kolmogorov" behavior including anisotropy and modifications of the classically accepted spatial power spectral slope, -11/3. In typical horizontal scenarios, atmospheric anisotropy implies that the variations in the refractive index are more spatially correlated in both horizontal directions than in the vertical. In this work, we extend Gaussian beam theory for propagation through Kolmogorov turbulence to the case of anisotropic turbulence along the horizontal direction. We also study the effects of different spatial power spectral slopes on the beam propagation. A description is developed for the average beam intensity profile, and the results for a range of scenarios are demonstrated for the first time with a wave optics simulation and a spatial light modulator-based laboratory benchtop counterpart. The theoretical, simulation, and benchtop intensity profiles show good agreement and illustrate that an elliptically shaped beam profile can develop upon propagation. For stronger turbulent fluctuation regimes and larger anisotropies, the theory predicts a slightly more elliptical form of the beam than is generated by the simulation or benchtop setup. The theory also predicts that without an outer scale limit, the beam width becomes unbounded as the power spectral slope index α approaches a maximum value of 4. This behavior is not seen in the simulation or benchtop results because the numerical phase screens used for these studies do not model the unbounded wavefront tilt component implied in the analytic theory.

9.
Appl Opt ; 54(15): 4740-4, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26192509

RESUMO

In this paper, we present a laboratory setup to simulate anisotropic, non-Kolmogorov turbulence. A sequence of numerical phase screens that incorporate the turbulence characteristics were applied to a spatial light modulator placed in the path of a laser beam with a Gaussian intensity profile and the resulting far-field intensity patterns were recorded by a CCD camera. The values of scintillation at the position of the maximum intensity were extracted from the images and compared with theoretical values. Our experimental results show a trend that is in agreement with known theoretical expressions; however, the turbulence rescaling due to anisotropy shows some discrepancy with theory and requires more investigation.

10.
Appl Opt ; 54(33): 9889-95, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26836553

RESUMO

The estimation of the refractive index from optical scattering off a target's surface is an important task for remote sensing applications. Optical polarimetry is an approach that shows promise for refractive index estimation. However, this estimation often relies on polarimetric models that are limited to specular targets involving single surface scattering. Here, an analytic model is developed for the degree of polarization (DOP) associated with reflection from a rough surface that includes the effect of diffuse scattering. A multiplicative factor is derived to account for the diffuse component and evaluation of the model indicates that diffuse scattering can significantly affect the DOP values. The scattering model is used in a new approach for refractive index estimation from a series of DOP values that involves jointly estimating n, k, and ρ(d)with a nonlinear equation solver. The approach is shown to work well with simulation data and additive noise. When applied to laboratory-measured DOP values, the approach produces significantly improved index estimation results relative to reference values.

11.
Opt Express ; 22(26): 31691-707, 2014 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-25607139

RESUMO

Two different methodologies for generating an electromagnetic Gaussian-Schell model source are discussed. One approach uses a sequence of random phase screens at the source plane and the other uses a sequence of random complex transmittance screens. The relationships between the screen parameters and the desired electromagnetic Gaussian-Schell model source parameters are derived. The approaches are verified by comparing numerical simulation results with published theory. This work enables one to design an electromagnetic Gaussian-Schell model source with pre-defined characteristics for wave optics simulations or laboratory experiments.


Assuntos
Desenho Assistido por Computador , Campos Eletromagnéticos , Iluminação/instrumentação , Iluminação/métodos , Modelos Estatísticos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Distribuição Normal
12.
IEEE Trans Image Process ; 20(1): 288-92, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20542767

RESUMO

Polarization, a property of light that conveys information about the transverse electric field orientation, complements other attributes of electromagnetic radiation such as intensity and frequency. Using multiple passive polarimetric images, we develop an iterative, model-based approach to estimate the complex index of refraction and apply it to target classification.

13.
Opt Express ; 18(20): 20746-58, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20940970

RESUMO

The problem of coherence length optimization in a spatially partially coherent beam for free space optical communication is investigated. The weak turbulence regime is considered. An expression for the scintillation index in a series form is derived and conditions for obtaining improvement in outage probability through optimization in the coherence length of the beam are described. A numerical test for confirming performance improvement due to coherence length optimization is proposed. The effects of different parameters, including the phase front radius of curvature, transmission distance, wavelength and beamwidth are studied. The results show that, for smaller distances and larger beamwidths, improvements in outage probability of several orders of magnitude can be achieved by using partially coherent beams.

14.
Appl Opt ; 48(33): 6511-27, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19935974

RESUMO

The probability density function (PDF) of aperture-averaged irradiance fluctuations is calculated from wave-optics simulations of a laser after propagating through atmospheric turbulence to investigate the evolution of the distribution as the aperture diameter is increased. The simulation data distribution is compared to theoretical gamma-gamma and lognormal PDF models under a variety of scintillation regimes from weak to strong. Results show that under weak scintillation conditions both the gamma-gamma and lognormal PDF models provide a good fit to the simulation data for all aperture sizes studied. Our results indicate that in moderate scintillation the gamma-gamma PDF provides a better fit to the simulation data than the lognormal PDF for all aperture sizes studied. In the strong scintillation regime, the simulation data distribution is gamma gamma for aperture sizes much smaller than the coherence radius rho0 and lognormal for aperture sizes on the order of rho0 and larger. Examples of how these results affect the bit-error rate of an on-off keyed free space optical communication link are presented.

15.
Appl Opt ; 48(32): 6132-42, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19904309

RESUMO

Accurate simulation of scalar optical diffraction requires consideration of the sampling requirement for the phase chirp function that appears in the Fresnel diffraction expression. We describe three sampling regimes for FFT-based propagation approaches: ideally sampled, oversampled, and undersampled. Ideal sampling, where the chirp and its FFT both have values that match analytic chirp expressions, usually provides the most accurate results but can be difficult to realize in practical simulations. Under- or oversampling leads to a reduction in the available source plane support size, the available source bandwidth, or the available observation support size, depending on the approach and simulation scenario. We discuss three Fresnel propagation approaches: the impulse response/transfer function (angular spectrum) method, the single FFT (direct) method, and the two-step method. With illustrations and simulation examples we show the form of the sampled chirp functions and their discrete transforms, common relationships between the three methods under ideal sampling conditions, and define conditions and consequences to be considered when using nonideal sampling. The analysis is extended to describe the sampling limitations for the more exact Rayleigh-Sommerfeld diffraction solution.

16.
Appl Opt ; 46(30): 7527-36, 2007 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17952192

RESUMO

A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.


Assuntos
Óptica e Fotônica , Algoritmos , Simulação por Computador , Desenho de Equipamento , Luz , Modelos Estatísticos , Método de Monte Carlo , Espalhamento de Radiação , Sensibilidade e Especificidade , Software
17.
Appl Opt ; 46(23): 6010-8, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17694157

RESUMO

The problem of estimating mechanical boresight and jitter performance of a laser pointing system in the presence of atmospheric turbulence is considered. A novel estimator based on maximizing an average probability density function (pdf) of the received signal is presented. The proposed estimator uses a Gaussian far-field mean irradiance profile, and the irradiance pdf is assumed to be lognormal. The estimates are obtained using a sequence of return signal values from the intended target. Alternatively, one can think of the estimates being made by a cooperative target using the received signal samples directly. The estimator does not require sample-to-sample atmospheric turbulence parameter information. The approach is evaluated using wave optics simulation for both weak and strong turbulence conditions. Our results show that very good boresight and jitter estimation performance can be obtained under the weak turbulence regime. We also propose a novel technique to include the effect of very low received intensity values that cannot be measured well by the receiving device. The proposed technique provides significant improvement over a conventional approach where such samples are simply ignored. Since our method is derived from the lognormal irradiance pdf, the performance under strong turbulence is degraded. However, the ideas can be extended with appropriate pdf models to obtain more accurate results under strong turbulence conditions.


Assuntos
Lasers , Óptica e Fotônica , Algoritmos , Atmosfera , Simulação por Computador , Desenho de Equipamento , Modelos Estatísticos , Modelos Teóricos , Distribuição Normal , Probabilidade
18.
Opt Lett ; 31(8): 1029-31, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16625892

RESUMO

Cramer-Rao lower bounds (CRLBs) on the estimation of the pointing parameters of a laser system using the return signal are obtained. A maximum likelihood estimator is found to obtain an estimation performance close to the CRLB in most scenarios considered.

19.
J Opt Soc Am A Opt Image Sci Vis ; 22(4): 616-24, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15839268

RESUMO

A signal recovery technique is motivated and derived for the recovery of several nonnegative signals from measurements of their autocorrelation and cross-correlation functions. The iterative technique is shown to preserve nonnegativity of the signal estimates and to produce a sequence of estimates whose correlations better approximate the measured correlations as the iterations proceed. The method is demonstrated on simulated data for active imaging with dual-frequency or dual-polarization illumination.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador , Modelos Estatísticos , Análise de Regressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA