Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 35(11): 1018-1033, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35914305

RESUMO

The development of pepper cultivars with durable resistance to the oomycete Phytophthora capsici has been challenging due to differential interactions between the species that allow certain pathogen isolates to cause disease on otherwise resistant host genotypes. Currently, little is known about the pathogen genes involved in these interactions. To investigate the genetic basis of P. capsici virulence on individual pepper genotypes, we inoculated sixteen pepper accessions, representing commercial varieties, sources of resistance, and host differentials, with 117 isolates of P. capsici, for a total of 1,864 host-pathogen combinations. Analysis of disease outcomes revealed a significant effect of inter-species genotype-by-genotype interactions, although these interactions were quantitative rather than qualitative in scale. Isolates were classified into five pathogen subpopulations, as determined by their genotypes at over 60,000 single-nucleotide polymorphisms (SNPs). While absolute virulence levels on certain pepper accessions significantly differed between subpopulations, a multivariate phenotype reflecting relative virulence levels on certain pepper genotypes compared with others showed the strongest association with pathogen subpopulation. A genome-wide association study (GWAS) identified four pathogen loci significantly associated with virulence, two of which colocalized with putative RXLR effector genes and another with a polygalacturonase gene cluster. All four loci appeared to represent broad-spectrum virulence genes, as significant SNPs demonstrated consistent effects regardless of the host genotype tested. Host genotype-specific virulence variants in P. capsici may be difficult to map via GWAS with all but excessively large sample sizes, perhaps controlled by genes of small effect or by multiple allelic variants that have arisen independently. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Capsicum , Phytophthora , Phytophthora/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Capsicum/genética
2.
Phytopathology ; 112(6): 1350-1360, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35021861

RESUMO

High tunnels extend the growing season of high value crops, including tomatoes, but the environmental conditions within high tunnels favor the spread of the tomato leaf mold pathogen, Passalora fulva (syn. Cladosporium fulvum). Tomato leaf mold results in defoliation, and if severe, losses in yield. Despite substantial research, little is known regarding the genetic structure and diversity of populations of P. fulva associated with high tunnel tomato production in the United States. From 2016 to 2019, a total of 50 P. fulva isolates were collected from tomato leaf samples in high tunnels in the Northeast and Minnesota. Other Cladosporium species were also isolated from the leaf surfaces. Koch's postulates were conducted to confirm that P. fulva was the cause of the disease symptoms observed. Race determination experiments revealed that the isolates belonged to either race 0 (six isolates) or race 2 (44 isolates). Polymorphisms were identified within four previously characterized effector genes: Avr2, Avr4, Avr4e, and Avr9. The largest number of polymorphisms were observed for Avr2. Both mating type genes, MAT1-1-1 and MAT1-2-1, were present in the isolate collection. For further insights into the pathogen diversity, the 50 isolates were genotyped at 7,514 single-nucleotide polymorphism loci using genotyping-by-sequencing. Differentiation by region but not by year was observed. Within the collection of 50 isolates, there were 18 distinct genotypes. Information regarding P. fulva population diversity will enable better management recommendations for growers, as high tunnel production of tomatoes expands.


Assuntos
Solanum lycopersicum , Ascomicetos , Cladosporium/genética , Proteínas Fúngicas/genética , Solanum lycopersicum/genética , Doenças das Plantas/genética , Estados Unidos
3.
Microbiol Resour Announc ; 10(21): e0029521, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042486

RESUMO

The oomycete Phytophthora capsici is a destructive pathogen of a wide range of vegetable hosts, especially peppers and cucurbits. A 94.17-Mb genome assembly was constructed using PacBio and Illumina data and annotated with support from transcriptome sequencing (RNA-Seq) reads.

4.
Theor Appl Genet ; 134(4): 1015-1031, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33388885

RESUMO

KEY MESSAGE: Two QTL mapping approaches were used to identify a total of six QTL associated with Phytophthora root and crown rot resistance in a biparental squash population. Phytophthora root and crown rot, caused by the soilborne oomycete pathogen Phytophthora capsici, leads to severe yield losses in squash (Cucurbita pepo). To identify quantitative trait loci (QTL) involved in resistance to this disease, we crossed a partially resistant squash breeding line with a susceptible zucchini cultivar and evaluated over 13,000 F2 seedlings in a greenhouse screen. Bulked segregant analysis with whole genome resequencing (BSA-Seq) resulted in the identification of five genomic regions-on chromosomes 4, 5, 8, 12, and 16-featuring significant allele frequency differentiation between susceptible and resistant bulks in each of two independent replicates. In addition, we conducted linkage mapping using a population of 176 F3 families derived from individually genotyped F2 individuals. Variation in disease severity among these families was best explained by a four-QTL model, comprising the same loci identified via BSA-Seq on chromosomes 4, 5, and 8 as well as an additional locus on chromosome 19, for a combined total of six QTL identified between both methods. Loci, whether those identified by BSA-Seq or linkage mapping, were of small-to-moderate effect, collectively accounting for 28-35% and individually for 2-10% of the phenotypic variance explained. However, a multiple linear regression model using one marker in each BSA-Seq QTL could predict F2:3 disease severity with only a slight drop in cross-validation accuracy compared to genomic prediction models using genome-wide markers. These results suggest that marker-assisted selection could be a suitable approach for improving Phytophthora crown and root rot resistance in squash.


Assuntos
Mapeamento Cromossômico/métodos , Cucurbita/genética , Resistência à Doença/genética , Genoma de Planta , Phytophthora/fisiologia , Raízes de Plantas/genética , Polimorfismo de Nucleotídeo Único , Cromossomos de Plantas/genética , Cucurbita/microbiologia , Resistência à Doença/imunologia , Marcadores Genéticos , Genômica , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Locos de Características Quantitativas
5.
Phytopathology ; 111(1): 204-216, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32539639

RESUMO

Phytophthora capsici is a soilborne oomycete plant pathogen that causes severe vegetable crop losses in New York (NY) state and worldwide. This pathogen is difficult to manage, in part due to its production of long-lasting sexual spores and its tendency to quickly evolve fungicide resistance. We single nucleotide polymorphism (SNP) genotyped 252 P. capsici isolates, predominantly from NY, in order to conduct a genome-wide association study for mating type and mefenoxam sensitivity. The population structure and extent of chromosomal copy number variation in this collection of isolates were also characterized. Population structure analyses showed isolates largely clustered by the field site where they were collected, with values of FST between pairs of fields ranging from 0.10 to 0.31. Thirty-three isolates were putative aneuploids, demonstrating evidence for having up to four linkage groups present in more than two copies, and an additional two isolates appeared to be genome-wide triploids. Mating type was mapped to a region on scaffold 4, consistent with previous findings, and mefenoxam sensitivity was associated with several SNP markers at a novel locus on scaffold 62. We identified several candidate genes for mefenoxam sensitivity, including a homolog of yeast ribosome synthesis factor Rrp5, but failed to locate near the scaffold 62 locus any subunits of RNA polymerase I, the hypothesized target site of phenylamide fungicides in oomycetes. This work expands our knowledge of the population biology of P. capsici and provides a foundation for functional validation of candidate genes associated with epidemiologically important phenotypes.


Assuntos
Phytophthora , Alanina/análogos & derivados , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , New York , Phytophthora/genética , Doenças das Plantas
6.
Exp Appl Acarol ; 26(3-4): 257-66, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12537298

RESUMO

From 1982-1985 and 1993-1999, a total of 309 individual reptiles, mostly lizards and snakes, belonging to 12 species (American alligator, six lizard species, five snake species) was captured on St. Catherine's Island, Liberty County, Georgia, USA, and examined for ticks. Three lizard species, the broad-headed skink Eumeces laticeps, southeastern 5-lined skink Eumeces inexpectatus, and eastern glass lizard Ophisaurus ventralis, were severely infested with larvae and nymphs of the blacklegged tick, Ixodes scapularis. Ticks were not found on any of the other reptile species. Overall, 80% of 65 E. inexpectatus examined were parasitized by a mean intensity of 21.5 larvae and 88% were parasitized by a mean intensity of 4.8 nymphs. Corresponding figures for E. laticeps (n=56) were 93% and 51.3 for larvae and 89% and 7.4 for nymphs, and for O. ventralis (n=3) were 67% and 22.5 for larvae and 100% and 21.3 for nymphs. Larvae and nymphs attached along the lateral grooves of O. ventralis. Nymphs attached mainly behind the ears and in the foreleg axillae whereas larvae mainly attached to these sites and on the hindlegs in Eumeces spp. Seasonally, both larvae and nymphs were recorded on lizards from April through October. A unimodal larval peak was recorded in May or June. Seasonal data for nymphs did not reveal any distinct peaks but small bimodal peaks in mean intensities may have occurred (one in early summer, the other in late summer) suggesting that some ticks complete their life cycle in one year, and others in two years, on St. Catherine's Island. Potential epidemiological consequences of these findings with respect to Lyme disease in the southeastern United States are briefly addressed.


Assuntos
Ixodes/crescimento & desenvolvimento , Lagartos/parasitologia , Infestações por Carrapato/veterinária , Animais , Geografia , Georgia/epidemiologia , Estações do Ano , Infestações por Carrapato/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA