Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exploration (Beijing) ; 3(4): 20220052, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37933238

RESUMO

Luminescence is an essential signal for many plants, insects, and marine organisms to attract the opposite sex, avoid predators, and so on. Most luminescent living organisms have ingenious optical structures which can help them get high luminescent performances. These remarkable and efficient structures have been formed by natural selection from long-time evolution. Researchers keenly observed the enhanced luminescence phenomena and studied how these phenomena happen in order to learn the characteristics of bio-photonics. In this review, we summarize the optical structures for enhancing luminescence and their applications. The structures are classified according to their different functions. We focus on how researchers use these biological inspirations to enhance different luminescence processes, such as chemiluminescence (CL), photoluminescence (PL), and electroluminescence (EL). It lays a foundation for further research on the applications of luminescence enhancement. Furthermore, we give examples of luminescence enhancement by bio-inspired structures in information encryption, biochemical detection, and light sources. These examples show that it is possible to use bio-inspired optical structures to solve complex problems in optical applications. Our work will provide guidance for research on biomimetic optics, micro- and nano-optical structures, and enhanced luminescence.

2.
Sci Bull (Beijing) ; 68(3): 276-283, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702683

RESUMO

Optical encryption, exploiting degrees of freedom of light as parameters to encode and decode information, plays an indispensable role in our daily life. Responsive structural color materials can give real-time visible feedback to external stimuli and provide ideal candidates for optical encryption. However, the development of existing responsive structural color materials is hindered by poor repeatability and long feedback time. Meanwhile, there are only few strategies to exploit structural colors in multichannel information encryption. Herein, bioinspired by the structural color variation due to a change in angle arising from the movement of animal's scales or feathers, we developed a general multichannel information encryption strategy using a two-dimensional deformable kirigami arranging orientations of the grating arrays by design. The kirigami grating sheet shows rapid, repeatable, and programmable color change. This strategy utilizes the topological space deformation to guide the change of optical property, which suggests new possibilities for spatial and spectral encryption as well as mechano-sensing and camouflage.

3.
Angew Chem Int Ed Engl ; 61(34): e202205636, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35698256

RESUMO

Solution-processed, high-gain, and wavelength-tunable perovskite single-crystal microdisk (PVKsc-MD) lasers have emerged as prospective coherent light sources in advanced nanophotonic designs. However, the inevitable multi-directional emission from a highly symmetrical cavity leads to low light collection efficiency which greatly hinders its application in integrated optical circuits. Here, we report on surface-patterned MAPbBr3 PVKsc-MDs synthesized by a cost-efficient bottom-up solution process employing spin-coating and confined-growth nanoimprinting. The patterned microdisks have high crystal quality with regular shape and sharp edges and nano-grating structure on the upper surface. This straightforward process yields surface-patterned PVKsc-MD lasers with a low lasing threshold and high quality (Q) factor. In addition, the grating structure patterned on the PVKsc-MDs reduces the original symmetry of the laser cavity, which improves the emission directionality four times.

4.
Adv Mater ; 34(3): e2107243, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34731906

RESUMO

Innovative multiplexing technologies based on nano-optics for anti-counterfeiting have been proposed as overt and covert technologies to secure products and make them difficult to counterfeit. However, most of these nano-optical anti-counterfeiting materials are metasurfaces and metamaterials with complex and expensive fabrication process, often resulting in materials that are not damage tolerant. Highly efficient anti-counterfeiting technologies with easy fabrication process are targeted for intuitive and effective authentication of banknotes, secure documents, and goods packing. Here, a simple strategy exploiting self-assembling and nanoimprinting technique to fabricate a composite lattice photonic crystal architecture featuring full spatial control of light, multiplexed full-pixel imaging, and multichannel cryptography combined with customized algorithms is reported. In particular, the real-time encryption/recognition of mobile quick response codes and anti-counterfeiting labels on a postage stamp, encoded by the proposed photonic architecture, are both demonstrated. The wave optics of scattering, diffraction, and polarization process involved are also described, validated with numerical simulations and experiments. By introducing a new degree of freedom in the 3D space, the multichannel image switching exhibits unprecedented variability of encryption, providing a promising roadmap to achieve larger information capacity, better security, and higher definition for the benefit of modern anti-counterfeiting security.

5.
Biosens Bioelectron ; 197: 113816, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34814031

RESUMO

Single-mode organic solid-state lasers with direct emission into an optical waveguide are attractive candidates for cost-efficient coherent light sources employed in photonic lab-on-a-chip biosensors. Here, we present a combination of a dye-doped organic solid-state distributed feedback laser with a highly sensitive optical waveguide Mach-Zehnder interferometer on a silicon nitride photonic platform. This organic-hybrid laser allows for optical pumping with a laser diode in an alignment tolerant manner, which facilitates applications in point-of-care diagnostics. The sensitivity to bulk refractive index changes and the concentration dependent binding of streptavidin on a polyethyleneimine-biotin functionalized surface was studied to demonstrate the practicability of this cost-efficient coherent light source for optical waveguide biosensors.


Assuntos
Técnicas Biossensoriais , Lasers de Estado Sólido , Interferometria , Compostos de Silício
6.
Micromachines (Basel) ; 12(5)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066638

RESUMO

The recent advances in chip-size microscopy based on optical scanning with spatially resolved nano-illumination light sources are presented. This new straightforward technique takes advantage of the currently achieved miniaturization of LEDs in fully addressable arrays. These nano-LEDs are used to scan the sample with a resolution comparable to the LED sizes, giving rise to chip-sized scanning optical microscopes without mechanical parts or optical accessories. The operation principle and the potential of this new kind of microscope are analyzed through three different implementations of decreasing LED dimensions from 20 µm down to 200 nm.

7.
Adv Mater ; 33(15): e2008091, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33675259

RESUMO

Light harvesting is crucial for thin-film solar cells. To substantially reduce optical loss in perovskite solar cells (PSCs), hierarchical light-trapping nano-architectures enable absorption enhancement to exceed the conventional upper limit and have great potential for achieving state-of-the art optoelectronic performances. However, it remains a great challenge to design and fabricate a superior hierarchical light-trapping nano-architecture, which exhibits extraordinary light-harvesting ability and simultaneously avoids deteriorating the electrical performance of PSCs. Herein, colorful efficient moiré-PSCs are designed and fabricated incorporating moiré interference structures by the imprinting method with the aid of a commercial DVD disc. It is experimentally and theoretically demonstrated that the light harvesting ability of the moiré interference structure can be well manipulated through changing the rotation angle (0°-90°). The boosted short-circuit current is credited to augment light diffraction channels, leading to elongated optical paths, and fold sunlight into the perovskite layer. Moreover, the imprinting process suppresses the trap sites and voids at the active-layer interfaces with eliminated hysteresis. The moiré-PSC with an optimized 30° rotation angle achieves the best enhancement of light harvesting (28.5% higher than the pristine), resulting in efficiencies over 20.17% (MAPbI3 ) and 21.76% ((FAPbI3 )1- x (MAPbBr3 )x ).

8.
Opt Express ; 28(22): 32468-32482, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114932

RESUMO

In this paper, we present a novel concept for a multi-channel swept source optical coherence tomography (OCT) system based on photonic integrated circuits (PICs). At the core of this concept is a low-loss polarization dependent path routing approach allowing for lower excess loss compared to previously shown PIC-based OCT systems, facilitating a parallelization of measurement units. As a proof of concept for the low-loss path routing, a silicon nitride PIC-based single-channel swept source OCT system operating at 840 nm was implemented and used to acquire in-vivo tomograms of a human retina. The fabrication of the PIC was done via CMOS-compatible plasma-enhanced chemical vapor deposition to allow future monolithic co-integration with photodiodes and read-out electronics. A performance analysis using the results of the implemented photonic building blocks shows a potential tenfold increase of the acquisition speed for a multi-channel system compared to an ideal lossless single-channel system with the same signal-to-noise ratio.

9.
Sci Rep ; 9(1): 18438, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804533

RESUMO

One of the major barriers for a widespread commercial uptake of silicon nitride photonic integrated circuits for cost-sensitive applications is the lack of low-cost monolithically integrated laser light sources directly emitting into single-mode waveguides. In this work, we demonstrate an optically pumped organic solid-state slot-waveguide distributed feedback laser designed for a silicon nitride organic hybrid photonic platform. Pulsed optical excitation of the gain medium is achieved by a 450 nm laser diode. The optical feedback for lasing is based on a second-order laterally coupled Bragg grating with a slot-waveguide core. Optimized material gain properties of the organic dye together with the increased modal gain of the laser mode arising from the improved overlap of the slot-waveguide geometry with the gain material enable single-mode lasing at a wavelength of 600 nm. The straightforward integration and operation with a blue laser diode leads to a cost-effective coherent light source for photonic integrated devices.

10.
Opt Express ; 27(22): 31394-31406, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684374

RESUMO

In this work, we present a detailed analysis of individual loss mechanisms in silicon nitride partial Euler bends at a wavelength of 850 nm. This structure optimizes the transmission through small radii optical waveguide bends. The partial Euler bend geometry balances losses arising from the transition from the straight to the bend waveguide mode and radiative losses of the bend waveguide mode. Numerical analyses are presented for 45-degree bends commonly employed in S-bend configurations to create lateral offsets, as well as 90- and 180-degree bends. Additionally, 90-degree partial Euler bends were fabricated on a silicon nitride photonic platform to experimentally complement the theoretical findings. The optimized waveguide bends allow for a reduced effective radius without increasing the total bend loss and, thus, enable a higher component density in photonic integrated circuits.

11.
Opt Express ; 27(20): 29350-29356, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684671

RESUMO

The provision of a coherent light source is a prerequisite for a variety of photonic integrated circuits. The integration of semiconductor laser diodes in disposable photonic devices in fields such as biosensing is, however, impeded by the competitive pricing in this application area. In this work, we demonstrate lasing of an alternative laser light source, namely an integrated hybrid organic solid-state distributed feedback laser for a silicon nitride photonic platform. The laser is optically pumped with a high power 450 nm laser diode and emits in the visible at 630 nm into a waveguide taper to reduce the cross-section to a single mode geometry. Inkjet printing of the organic gain medium enables a local, cost-effective, and flexible processing technology. The fabrication of the presented coherent light source is CMOS compatible and therefore highly interesting for co-integrated sensing platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA