Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci Alliance ; 4(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33536239

RESUMO

Members of the lipocalin protein family serve as biomarkers for kidney disease and acute phase inflammatory reactions, and are under preclinical development for the diagnosis and therapy of allergies. However, none of the lipocalin family members has made the step into clinical development, mostly due to their complex biological activity and the lack of in-depth mechanistic knowledge. Here, we show that the hepatokine lipocalin 13 (LCN13) triggers glucose-dependent insulin secretion and cell proliferation of primary mouse islets. However, inhibition of endogenous LCN13 expression in lean mice did not alter glucose and lipid homeostasis. Enhanced hepatic secretion of LCN13 in either diet-induced or genetic obesity led to no discernible impact on systemic glucose and lipid metabolism, neither in preventive nor therapeutic setting. Of note, loss or forced LCN13 hepatic secretion did not trigger any compensatory regulation of related lipocalin family members. Together, these data are in stark contrast to the suggested gluco-regulatory and therapeutic role of LCN13 in obesity, and imply complex regulatory steps in LCN13 biology at the organismic level mitigating its principal insulinotropic effects.


Assuntos
Metabolismo Energético , Secreção de Insulina , Lipocalinas/genética , Lipocalinas/metabolismo , Animais , Biomarcadores , Imunofluorescência , Expressão Gênica , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Metabolismo dos Lipídeos , Lipocalinas/sangue , Fígado/metabolismo , Masculino , Camundongos , Obesidade/etiologia , Obesidade/metabolismo
2.
EMBO Rep ; 20(11): e48552, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31559673

RESUMO

Aberrant activity of the glucocorticoid (GC)/glucocorticoid receptor (GR) endocrine system has been linked to obesity-related metabolic dysfunction. Traditionally, the GC/GR axis has been believed to play a crucial role in adipose tissue formation and function in both, white (WAT) and brown adipose tissue (BAT). While recent studies have challenged this notion for WAT, the contribution of GC/GR signaling to BAT-dependent energy homeostasis remained unknown. Here, we have generated and characterized a BAT-specific GR-knockout mouse (GRBATKO ), for the first time allowing to genetically interrogate the metabolic impact of BAT-GR. The HPA axis in GRBATKO mice was intact, as was the ability of mice to adapt to cold. BAT-GR was dispensable for the adaptation to fasting-feeding cycles and the development of diet-induced obesity. In obesity, glucose and lipid metabolism, insulin sensitivity, and food intake remained unchanged, aligning with the absence of changes in thermogenic gene expression. Together, we demonstrate that the GR in UCP1-positive BAT adipocytes plays a negligible role in systemic metabolism and BAT function, thereby opposing a long-standing paradigm in the field.


Assuntos
Adipócitos Marrons/metabolismo , Metabolismo Energético , Homeostase , Receptores de Glucocorticoides/metabolismo , Animais , Peso Corporal , Resposta ao Choque Frio , Jejum , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA