Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Host Microbe ; 30(11): 1556-1569.e5, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36302390

RESUMO

Bacterial anti-phage systems are frequently clustered in microbial genomes, forming defense islands. This property enabled the recent discovery of multiple defense systems based on their genomic co-localization with known systems, but the full arsenal of anti-phage mechanisms remains unknown. We report the discovery of 21 defense systems that protect bacteria from phages, based on computational genomic analyses and phage-infection experiments. We identified multiple systems with domains involved in eukaryotic antiviral immunity, including those homologous to the ubiquitin-like ISG15 protein, dynamin-like domains, and SEFIR domains, and show their participation in bacterial defenses. Additional systems include domains predicted to manipulate DNA and RNA molecules, alongside toxin-antitoxin systems shown here to function in anti-phage defense. These systems are widely distributed in microbial genomes, and in some bacteria, they form a considerable fraction of the immune arsenal. Our data substantially expand the inventory of defense systems utilized by bacteria to counteract phage infection.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Bactérias/genética , Genoma Microbiano , Genômica , Sistema Imunitário
2.
Cell ; 183(6): 1551-1561.e12, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33157039

RESUMO

Retrons are bacterial genetic elements comprised of a reverse transcriptase (RT) and a non-coding RNA (ncRNA). The RT uses the ncRNA as template, generating a chimeric RNA/DNA molecule in which the RNA and DNA components are covalently linked. Although retrons were discovered three decades ago, their function remained unknown. We report that retrons function as anti-phage defense systems. The defensive unit is composed of three components: the RT, the ncRNA, and an effector protein. We examined multiple retron systems and show that they confer defense against a broad range of phages via abortive infection. Focusing on retron Ec48, we show evidence that it "guards" RecBCD, a complex with central anti-phage functions in bacteria. Inhibition of RecBCD by phage proteins activates the retron, leading to abortive infection and cell death. Thus, the Ec48 retron forms a second line of defense that is triggered if the first lines of defense have collapsed.


Assuntos
Bactérias/genética , Bactérias/imunologia , Bacteriófagos/fisiologia , RNA não Traduzido/genética , DNA Polimerase Dirigida por RNA/genética , Bactérias/virologia , Ilhas de CpG/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/imunologia , Escherichia coli/virologia , Proteínas de Escherichia coli/metabolismo , Filogenia
3.
Life Sci Alliance ; 3(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32764104

RESUMO

Paenibacillus polymyxa is an agriculturally important plant growth-promoting rhizobacterium. Many Paenibacillus species are known to be engaged in complex bacteria-bacteria and bacteria-host interactions, which in other species were shown to necessitate quorum sensing communication. However, to date, no quorum sensing systems have been described in Paenibacillus Here, we show that the type strain P. polymyxa ATCC 842 encodes at least 16 peptide-based communication systems. Each of these systems is comprised of a pro-peptide that is secreted to the growth medium and processed to generate a mature short peptide. Each peptide has a cognate intracellular receptor of the RRNPP family, and we show that external addition of P. polymyxa communication peptides leads to reprogramming of the transcriptional response. We found that these quorum sensing systems are conserved across hundreds of species belonging to the Paenibacillaceae family, with some species encoding more than 25 different peptide-receptor pairs, representing a record number of quorum sensing systems encoded in a single genome.


Assuntos
Paenibacillus polymyxa/genética , Percepção de Quorum/fisiologia , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Genômica/métodos , Paenibacillus/genética , Desenvolvimento Vegetal , Percepção de Quorum/genética
4.
mBio ; 10(5)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594819

RESUMO

N-Acyl homoserine lactone (AHL) quorum sensing (QS) controls expression of over 200 genes in Pseudomonas aeruginosa. There are two AHL regulatory systems: the LasR-LasI circuit and the RhlR-RhlI system. We mapped transcription termination sites affected by AHL QS in P. aeruginosa, and in doing so we identified AHL-regulated small RNAs (sRNAs). Of interest, we noted that one particular sRNA was located within the rhlI locus. We found that rhlI, which encodes the enzyme that produces the AHL N-butanoyl-homoserine lactone (C4-HSL), is controlled by a 5' untranslated region (UTR)-derived sRNA we name RhlS. We also identified an antisense RNA encoded opposite the beginning of the rhlI open reading frame, which we name asRhlS. RhlS accumulates as wild-type cells enter stationary phase and is required for the production of normal levels of C4-HSL through activation of rhlI translation. RhlS also directly posttranscriptionally regulates at least one other unlinked gene, fpvA. The asRhlS appears to be expressed at maximal levels during logarithmic growth, and we suggest RhlS may act antagonistically to the asRhlS to regulate rhlI translation. The rhlI-encoded sRNAs represent a novel aspect of RNA-mediated tuning of P. aeruginosa QS.IMPORTANCE The opportunistic human pathogen Pseudomonas aeruginosa possesses multiple quorum sensing systems that regulate and coordinate production of virulence factors and adaptation to different environments. Despite extensive research, the regulatory elements that play a role in this complex network are still not fully understood. By using several RNA sequencing techniques, we were able to identify a small regulatory RNA we named RhlS. RhlS increases translation of RhlI, a key enzyme in the quorum sensing pathway, and represses the fpvA mRNA encoding one of the siderophore pyoverdine receptors. Our results highlight a new regulatory layer of P. aeruginosa quorum sensing and contribute to the growing understanding of the role regulatory RNAs play in bacterial physiology.


Assuntos
4-Butirolactona/análogos & derivados , Regiões 5' não Traduzidas , Regulação Bacteriana da Expressão Gênica , Ligases/metabolismo , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Pequeno RNA não Traduzido/metabolismo , Fatores de Transcrição/metabolismo , 4-Butirolactona/metabolismo , Proteínas de Bactérias/metabolismo , Ligases/genética , Pseudomonas aeruginosa/genética , Pequeno RNA não Traduzido/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA