Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 237: 113854, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38502974

RESUMO

Polymer mucoadhesive films being developed for use in ophthalmology represent a new tool for drug delivery and are considered an alternative to traditional dosage forms. Due to their mucoadhesive properties, carrageenans (CRGs) are widely used in various forms for drug delivery. In this study, films based on CRGs of various structural types (κ/ß, κ, x, and λ) for use in ophthalmology were studied. The films were loaded with the active substance echinochrome (ECH), a sea urchin pigment used in ophthalmology. Spectral data showed that ECH remained stable after its incorporation into the CRG films and did not oxidize for at least six months. Hydrophilic CRG films with a thickness of 10-12 µm were characterized in terms of their swelling and mucoadhesive properties. The rheological properties of solutions formed after film dissolution in artificial tears were also assessed. κ- and κ/ß-CRG films with ECH exhibited pseudoplastic behavior after rehydrating films with an artificial tear solution. The CRG-loaded films had different swelling characteristics depending on the structure of the CRG used. The films based on highly sulfated CRGs dissolved in artificial tears, while the films of low-sulfated κ/ß-CRG exhibited limited swelling. All studied ECH-loaded films exhibited mucoadhesive properties, which were evaluated by a texture analyzer using mucous tissue of the small intestine of the pig as a model. There was a slight prolongation of ECH release from CRG films in artificial tears. The effect of CRG/ECH on the epithelial cell lines of the outer shell of the human eye was investigated. At low concentrations, ECH in the composition of the CRG/ECH complex had no cytotoxic effect on corneal epithelial and conjunctival human cells. The use of ECH-containing films can prevent the drug from being immediately washed away by tears and help to retain it by increasing viscosity and having mucoadhesive properties.


Assuntos
Sistemas de Liberação de Medicamentos , Lubrificantes Oftálmicos , Humanos , Animais , Suínos , Carragenina/química , Lubrificantes Oftálmicos/metabolismo , Lubrificantes Oftálmicos/farmacologia , Olho , Intestino Delgado
2.
Mar Drugs ; 21(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37103377

RESUMO

Nanoparticles formation is one of the ways to modulate the physicochemical properties and enhance the activity of original polysaccharides. For this purpose, based on the polysaccharide of red algae, κ-carrageenan (κ-CRG), it polyelectrolyte complex (PEC), with chitosan, were obtained. The complex formation was confirmed by ultracentrifugation in a Percoll gradient, with dynamic light scattering. According to electron microscopy and DLS, PEC is dense spherical particles with sizes in the range of 150-250 nm. A decrease in the polydispersity of the initial CRG was detected after the PEC formation. Simultaneous exposure of Vero cells with the studied compounds and herpes simplex virus type 1 (HSV-1) showed that the PEC exhibited significant antiviral activity, effectively inhibiting the early stages of virus-cell interaction. A two-fold increase in the antiherpetic activity (selective index) of PEC compared to κ-CRG was shown, which may be due to a change in the physicochemical characteristics of κ-CRG in PEC.


Assuntos
Quitosana , Herpesvirus Humano 1 , Animais , Chlorocebus aethiops , Carragenina/química , Quitosana/farmacologia , Quitosana/química , Células Vero , Polissacarídeos , Polieletrólitos
3.
Mar Drugs ; 20(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36005525

RESUMO

Mucoadhesive polymers are of growing interest in the field of drug delivery due to their ability to interact with the body's mucosa and increase the effectiveness of the drug. Excellent mucoadhesive performance is typically observed for polymers possessing charged groups or non-ionic functional groups capable of forming hydrogen bonds and electrostatic interactions with mucosal surfaces. Among mucoadhesive polymers, marine carbohydrate biopolymers have been attracting attention due to their biocompatibility and biodegradability, sample functional groups, strong water absorption and favorable physiochemical properties. Despite the large number of works devoted to mucoadhesive polymers, there are very few systematic studies on the influence of structural features of marine polysaccharides on mucoadhesive interactions. The purpose of this review is to characterize the mucoadhesive properties of marine carbohydrates with a focus on chitosan, carrageenan, alginate and their use in designing drug delivery systems. A wide variety of methods which have been used to characterize mucoadhesive properties of marine polysaccharides are presented in this review. Mucoadhesive drug delivery systems based on such polysaccharides are characterized by simplicity and ease of use in the form of tablets, gels and films through oral, buccal, transbuccal and local routes of administration.


Assuntos
Quitosana , Sistemas de Liberação de Medicamentos , Carboidratos , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Polímeros/química , Polissacarídeos , Comprimidos
4.
Mar Drugs ; 20(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35049914

RESUMO

The structural diversity and unique physicochemical properties of sulphated polysaccharides of red algae carrageenans (CRGs), to a great extent, determine the wide range of their antiviral properties. This work aimed to compare the antiviral activities of different structural types of CRGs: against herpes simplex virus type 1 (HSV-1) and enterovirus (ECHO-1). We found that CRGs significantly increased the resistance of Vero cells to virus infection (preventive effect), directly affected virus particles (virucidal effect), inhibited the attachment and penetration of virus to cells, and were more effective against HSV-1. CRG1 showed the highest virucidal effect on HSV-1 particles with a selective index (SI) of 100. CRG2 exhibited the highest antiviral activity by inhibiting HSV-1 and ECHO-1 plaque formation, with a SI of 110 and 59, respectively, when it was added before virus infection. CRG2 also significantly reduced the attachment of HSV-1 and ECHO-1 to cells compared to other CRGs. It was shown by molecular docking that tetrasaccharides-CRGs are able to bind with the HSV-1 surface glycoprotein, gD, to prevent virus-cell interactions. The revealed differences in the effect of CRGs on different stages of the lifecycle of the viruses are apparently related to the structural features of the investigated compounds.


Assuntos
Antivirais/farmacologia , Carragenina/farmacologia , Rodófitas , Animais , Antivirais/química , Organismos Aquáticos , Carragenina/química , Chlorocebus aethiops , Enterovirus/efeitos dos fármacos , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Células Vero/efeitos dos fármacos
5.
Mar Drugs ; 19(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34940703

RESUMO

The influence of the structural features of carrageenan on the functional properties of the films was studied. The carrageenans and chitosan films, as well as three-layer films containing a polyelectrolyte complex (PEC) of the two, were prepared. The X-ray diffractograms of carrageenan films reflected its amorphous structure, whereas chitosan and three-layer films were characterized by strong reflection in the regions of 20° and 15° angles, respectively. The SEM of the cross-sectional morphology showed dense packing of the chitosan film, as well as the layer-by-layer structure of different densities for the PEC. Among the tested samples, κ/ß-carrageenan and chitosan films showed the highest tensile strength and maximum elongation. Films containing the drug substance echinochrome were obtained. Mucoadhesive properties were assessed as the ability of the films to swell on the mucous tissue and their erosion after contact with the mucosa. All studied films exhibited mucoadhesive properties. All studied films exhibited mucoadhesive properties which depended on the carrageenans structure. Multilayer films are stronger than single-layer carrageenan films due to PEC formation. The resulting puncture strength of the obtained films was comparable to that of commercial samples described in the literature.


Assuntos
Biofilmes , Carragenina/química , Quitosana/química , Polieletrólitos/química , Animais , Organismos Aquáticos , Resistência à Tração
6.
Mar Drugs ; 18(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899783

RESUMO

The immunotropic activity of polyelectrolyte complexes (PEC) of κ-carrageenan (κ-CGN) and chitosan (CH) of various compositions was assessed in comparison with the initial polysaccharides in comparable doses. For this, two soluble forms of PEC, with an excess of CH (CH:CGN mass ratios of 10:1) and with an excess of CGN (CH: CGN mass ratios of 1:10) were prepared. The ability of PEC to scavenge NO depended on the content of the κ-CGN in the PEC. The ability of the PEC to induce the synthesis of pro-inflammatory (tumor necrosis factor-α (TNF-α)) and anti-inflammatory (interleukine-10 (IL-10)) cytokines in peripheral blood mononuclear cell was determined by the activity of the initial κ-CGN, regardless of their composition. The anti-inflammatory activity of PEC and the initial compounds was studied using test of histamine-, concanavalin A-, and sheep erythrocyte immunization-induced inflammation in mice. The highest activity of PEC, as well as the initial polysaccharides κ-CGN and CH, was observed in a histamine-induced exudative inflammation, directly related to the activation of phagocytic cells, i.e., macrophages and neutrophils.


Assuntos
Anti-Inflamatórios/farmacologia , Carragenina/farmacologia , Quitosana/farmacologia , Edema/prevenção & controle , Inflamação/prevenção & controle , Polieletrólitos/farmacologia , Animais , Quitosana/análogos & derivados , Citocinas/metabolismo , Modelos Animais de Doenças , Edema/imunologia , Edema/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose/efeitos dos fármacos
7.
Mar Drugs ; 18(5)2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397584

RESUMO

The inhibitory effects of carrageenans (CRGs) on lipopolysaccharide (LPS) induced inflammation in a mouse model of endotoxemia and in complex therapy of patients with enteric infections of Salmonella etiology were studied. The atomic force microscopy (AFM) examination of LPS and its mixture with CRGs showed that the LPS morphology is significantly changed under the action of κ- and κ/ß-CRGs. CRGs were able to increase the synthesis of anti-inflammatory interleukin 10 (IL-10) in vitro, and, at low concentrations, their activity in the mixture with LPS was higher. The protective effect of CRGs against Escherichia coli LPS was studied in vivo by monitoring the biochemical and pathomorphological parameters. The κ- and κ/ß-CRGs and food supplement "Carrageenan-FE" increased the nonspecific resistance of mice to E. coli LPS at the expense of the inhibition of processes of thymus involution, adrenals hypertrophy, thyroid atrophy, hypercorticoidism, glycogenolysis, and lactate acidosis. The estimation of the therapeutic action of food supplement Carrageenan-FE in complex therapy of patients with enteric infections of Salmonella etiology is given. Carrageenan-FE restores the system of hemostasis and corrects some biochemical indicators and parameters in the immune systems of patients. These results allow us to hope for the practical application of CRGs for lowering the endotoxemia level in patients under the development of the infectious process caused by Gram-negative bacteria.


Assuntos
Carragenina/administração & dosagem , Suplementos Nutricionais , Endotoxemia/dietoterapia , Infecções por Escherichia coli/tratamento farmacológico , Intoxicação Alimentar por Salmonella/dietoterapia , Animais , Carragenina/isolamento & purificação , Modelos Animais de Doenças , Endotoxemia/imunologia , Infecções por Escherichia coli/imunologia , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Rodófitas/química , Salmonella/isolamento & purificação , Intoxicação Alimentar por Salmonella/sangue , Intoxicação Alimentar por Salmonella/imunologia , Intoxicação Alimentar por Salmonella/microbiologia
8.
Carbohydr Polym ; 181: 86-92, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29254046

RESUMO

A polyelectrolyte complex (PEC) was prepared from chitosan (CS) and λ-carrageenan (λ-CAR) using a layer-by-layer deposition of polyion solutions on a plated nonporous support. This material was then used as a multilayer membrane for the pervaporation separation of aqueous ethanol solutions. The fabricated complex film (25-30µm thick) was a multilayer system (λ-CAR-PEC-CS) containing a polycation CS (MW 3.1×105, DDА 0.93), a polyanion λ-CAR (MW 3.5×105, extracted from the alga Chondrus armatus), and a PEC layer formed between the two polyion layers. X-ray diffraction indicated a significant structuring of the film in the region of the composite PEC-CS bilayer. The structural and morphological characteristics of the CS surface in the multilayer membrane, as revealed by atomic force microscopy, were close to the characteristics of the dense CS film. However, this structure changed following pervaporation (i.e., the distinct spherical structures on the surface disappeared). Similarly, the initially loose surface of λ-CAR in the composite changed to an ordered domain after pervaporation. The transport properties of the pervaporation membranes were tested by examining the separation of ethanol-water mixtures of different compositions. The flux increased with an increase in the weight percentage of water in the feed mixture, but the separation capacity of the membrane was unchanged. In a range of feed concentrations of 50-94wt%, the membrane mainly releases water with a corresponding concentration in the permeate of 99.9-99.8wt% and substantial fluxes of 0.003-1.130kgm-2h-1 at 40°C. The obtained results indicate significant prospects for the use of non-gelling type CARs for the formation of highly effective pervaporation membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA