Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(7): 2406-2422, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38734899

RESUMO

Vaccinia viruses (VACVs) are versatile therapeutic agents and different features of various VACV strains allow for a broad range of therapeutic applications. Modified VACV Ankara (MVA) is a particularly altered VACV strain that is highly immunogenic, incapable of replicating in mammalian hosts, and broadly used as a safe vector for vaccination. Alternatively, Western Reserve (WR) or Copenhagen (Cop) are VACV strains that efficiently replicate in cancer cells and, therefore, are used to develop oncolytic viruses. However, the immune evasion capacity of WR or Cop hinders their ability to elicit antitumor immune responses, which is crucial for efficacy in the clinic. Here, we describe a new VACV strain named Immune-Oncolytic VACV Ankara (IOVA), which combines efficient replication in cancer cells with induction of immunogenic tumor cell death (ICD). IOVA was engineered from an MVA ancestor and shows superior cytotoxicity in tumor cells. In addition, the IOVA genome incorporates mutations that lead to massive fusogenesis of tumor cells, which contributes to improved antitumor effects. In syngeneic mouse tumor models, the induction of ICD results in robust antitumor immunity directed against tumor neo-epitopes and eradication of large established tumors. These data present IOVA as an improved immunotherapeutic oncolytic vector.


Assuntos
Morte Celular Imunogênica , Terapia Viral Oncolítica , Vírus Oncolíticos , Vaccinia virus , Vaccinia virus/genética , Vaccinia virus/imunologia , Animais , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Camundongos , Humanos , Terapia Viral Oncolítica/métodos , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Replicação Viral , Vetores Genéticos/genética
2.
Viruses ; 16(3)2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38543782

RESUMO

The sudden emergence of SARS-CoV-2 demonstrates the need for new vaccines that rapidly protect in the case of an emergency. In this study, we developed a recombinant MVA vaccine co-expressing SARS-CoV-2 prefusion-stabilized spike protein (ST) and SARS-CoV-2 nucleoprotein (N, MVA-SARS-2-ST/N) as an approach to further improve vaccine-induced immunogenicity and efficacy. Single MVA-SARS-2-ST/N vaccination in K18-hACE2 mice induced robust protection against lethal respiratory SARS-CoV-2 challenge infection 28 days later. The protective outcome of MVA-SARS-2-ST/N vaccination correlated with the activation of SARS-CoV-2-neutralizing antibodies (nABs) and substantial amounts of SARS-CoV-2-specific T cells especially in the lung of MVA-SARS-2-ST/N-vaccinated mice. Emergency vaccination with MVA-SARS-2-ST/N just 2 days before lethal SARS-CoV-2 challenge infection resulted in a delayed onset of clinical disease outcome in these mice and increased titers of nAB or SARS-CoV-2-specific T cells in the spleen and lung. These data highlight the potential of a multivalent COVID-19 vaccine co-expressing S- and N-protein, which further contributes to the development of rapidly protective vaccination strategies against emerging pathogens.


Assuntos
COVID-19 , Melfalan , SARS-CoV-2 , Vacinas de DNA , Vacinas Virais , gama-Globulinas , Animais , Humanos , Camundongos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Anticorpos Neutralizantes
3.
Vaccines (Basel) ; 12(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38250865

RESUMO

Aging is associated with a decline in immune system functionality. So-called immunosenescence may impair the successful vaccination of elderly people. Thus, improved vaccination strategies also suitable for an aged immune system are required. Modified Vaccinia virus Ankara (MVA) is a highly attenuated and replication-deficient vaccinia virus that has been established as a multipurpose viral vector for vaccine development against various infections. We characterized a recombinant MVA expressing a prefusion-stabilized version of SARS-CoV-2 S protein (MVA-ST) in an aged-hamster model for COVID-19. Intramuscular MVA-ST immunization resulted in protection from disease and severe lung pathology. Importantly, this protection was correlated with a potent activation of SARS-CoV-2 specific T-cells and neutralizing antibodies. Our results suggest that MVA vector vaccines merit further evaluation in preclinical models to contribute to future clinical development as candidate vaccines in elderly people to overcome the limitations of age-dependent immunosenescence.

4.
NPJ Vaccines ; 9(1): 20, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278816

RESUMO

In response to the COVID-19 pandemic, multiple vaccines were developed using platforms such as viral vectors and mRNA technology. Here, we report humoral and cellular immunogenicity data from human phase 1 clinical trials investigating two recombinant Modified Vaccinia virus Ankara vaccine candidates, MVA-SARS-2-S and MVA-SARS-2-ST, encoding the native and the prefusion-stabilized SARS-CoV-2 spike protein, respectively. MVA-SARS-2-ST was more immunogenic than MVA-SARS-2-S, but both were less immunogenic compared to licensed mRNA- and ChAd-based vaccines in SARS-CoV-2 naïve individuals. In heterologous vaccination, previous MVA-SARS-2-S vaccination enhanced T cell functionality and MVA-SARS-2-ST boosted the frequency of T cells and S1-specific IgG levels when used as a third vaccination. While the vaccine candidate containing the prefusion-stabilized spike elicited predominantly S1-specific responses, immunity to the candidate with the native spike was skewed towards S2-specific responses. These data demonstrate how the spike antigen conformation, using the same viral vector, directly affects vaccine immunogenicity in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA