Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38645179

RESUMO

Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hours after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity. We confirm extensive concordant loss of TEAD1 binding, active H3K27ac histone marks, and chromatin looping interactions upon infection. Our data position TEAD1 at the top of a hierarchy involving multiple altered important developmental pathways. HCMV infection reduces TEAD1 activity through four distinct mechanisms: closing of TEAD1-bound chromatin, reduction of YAP1 and phosphorylated YAP1 levels, reduction of TEAD1 transcript and protein levels, and alteration of TEAD1 exon-6 usage. Altered TEAD1-based mechanisms are highly enriched at genetic risk loci associated with eye and ear development, providing mechanistic insight into HCMV's established roles in these processes.

2.
BMC Genomics ; 25(1): 273, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475709

RESUMO

BACKGROUND: There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS: In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS: This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Genoma Humano , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteínas Virais/genética , Fatores de Transcrição/metabolismo
3.
Am J Hum Genet ; 111(2): 280-294, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183988

RESUMO

Eosinophilic esophagitis (EoE) is a rare atopic disorder associated with esophageal dysfunction, including difficulty swallowing, food impaction, and inflammation, that develops in a small subset of people with food allergies. Genome-wide association studies (GWASs) have identified 9 independent EoE risk loci reaching genome-wide significance (p < 5 × 10-8) and 27 additional loci of suggestive significance (5 × 10-8 < p < 1 × 10-5). In the current study, we perform linkage disequilibrium (LD) expansion of these loci to nominate a set of 531 variants that are potentially causal. To systematically interrogate the gene regulatory activity of these variants, we designed a massively parallel reporter assay (MPRA) containing the alleles of each variant within their genomic sequence context cloned into a GFP reporter library. Analysis of reporter gene expression in TE-7, HaCaT, and Jurkat cells revealed cell-type-specific gene regulation. We identify 32 allelic enhancer variants, representing 6 genome-wide significant EoE loci and 7 suggestive EoE loci, that regulate reporter gene expression in a genotype-dependent manner in at least one cellular context. By annotating these variants with expression quantitative trait loci (eQTL) and chromatin looping data in related tissues and cell types, we identify putative target genes affected by genetic variation in individuals with EoE. Transcription factor enrichment analyses reveal possible roles for cell-type-specific regulators, including GATA3. Our approach reduces the large set of EoE-associated variants to a set of 32 with allelic regulatory activity, providing functional insights into the effects of genetic variation in this disease.


Assuntos
Enterite , Eosinofilia , Esofagite Eosinofílica , Gastrite , Humanos , Esofagite Eosinofílica/genética , Esofagite Eosinofílica/complicações , Estudo de Associação Genômica Ampla , Genótipo , Locos de Características Quantitativas/genética
4.
Cell Rep ; 42(10): 113180, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37794597

RESUMO

Cognate interaction between CD4+ effector memory T (TEM) cells and dendritic cells (DCs) induces innate inflammatory cytokine production, resulting in detrimental autoimmune pathology and cytokine storms. While TEM cells use tumor necrosis factor (TNF) superfamily ligands to activate DCs, whether TEM cells prompt other DC-intrinsic changes that influence the innate inflammatory response has never been investigated. We report the surprising discovery that TEM cells trigger double-strand DNA breaks via mitochondrial reactive oxygen species (ROS) production in interacting DCs. Initiation of the DNA damage response in DCs induces activation of a cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-independent, non-canonical stimulator of interferon genes (STING)-TNF receptor-associated factor 6 (TRAF6)-nuclear factor κB (NF-κB) signaling axis. Consequently, STING-deficient DCs display reduced NF-κB activation and subsequent defects in transcriptional induction and functional production of interleukin-1ß (IL-1ß) and IL-6 following their interaction with TEM cells. The discovery of TEM cell-induced innate inflammation through DNA damage and a non-canonical STING-NF-κB pathway presents this pathway as a potential target to alleviate T cell-driven inflammation in autoimmunity and cytokine storms.


Assuntos
Células Dendríticas , Inflamação , Células T de Memória , Humanos , Síndrome da Liberação de Citocina , Células Dendríticas/metabolismo , Dano ao DNA , Inflamação/patologia , Células T de Memória/metabolismo , NF-kappa B/metabolismo , Nucleotidiltransferases/metabolismo
5.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662191

RESUMO

Multinucleated skeletal muscle cells have an obligatory need to acquire additional nuclei through fusion with activated skeletal muscle stem cells when responding to both developmental and adaptive growth stimuli. A fundamental question in skeletal muscle biology has been the reason underlying this need for new nuclei in syncytial cells that already harbor hundreds of nuclei. To begin to answer this long-standing question, we utilized nuclear RNA-sequencing approaches and developed a lineage tracing strategy capable of defining the transcriptional state of recently fused nuclei and distinguishing this state from that of pre-existing nuclei. Our findings reveal the presence of conserved markers of newly fused nuclei both during development and after a hypertrophic stimulus in the adult. However, newly fused nuclei also exhibit divergent gene expression that is determined by the myogenic environment to which they fuse. Moreover, accrual of new nuclei through fusion is required for nuclei already resident in adult myofibers to mount a normal transcriptional response to a load-inducing stimulus. We propose a model of mutual regulation in the control of skeletal muscle development and adaptations, where newly fused and pre-existing myonuclear populations influence each other to maintain optimal functional growth.

6.
Nat Commun ; 14(1): 1975, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031202

RESUMO

Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.


Assuntos
Carcinoma de Células Escamosas , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Feminino , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Transcriptoma , Epitélio/metabolismo , Queratinócitos/metabolismo , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Proteínas Oncogênicas Virais/genética
7.
Adv Pharmacol ; 96: 1-23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858770

RESUMO

In a dynamic environment, organisms must constantly mount an adaptive response to new environmental conditions in order to survive. Novel patterns of gene expression, driven by attendant changes in chromatin architecture, aid in adaptation and survival. Critical mechanisms in the control of gene transcription govern new spatiotemporal chromatin-chromatin interactions that make regulatory DNA elements accessible to the transcription factors that control the response. Consequently, agents that disrupt chromatin structure are likely to have a direct impact on the transcriptional programs of cells and organisms and to drive alterations in fundamental physiological processes. In this regard, hexavalent chromium (Cr(VI)) is of special interest because it interacts directly with cellular proteins, DNA, and other macromolecules, and is likely to upset cell functions that may cause generalized damage to the organism. Here, we will highlight chromium-mediated mechanisms that disrupt chromatin architecture and discuss how these mechanisms are integral to its carcinogenic properties. Emerging evidence indicates that Cr(VI) targets euchromatin, particularly in genomic locations flanking the binding sites of the essential transcription factors CTCF and AP1, and, in so doing, they disrupt nucleosomal architecture. Ultimately, the ensuing changes, if occurring in critical regulatory domains, may establish a new chromatin state, either toxic or adaptive, that will be governed by the corresponding gene transcription changes in key biological processes associated with that state.


Assuntos
Cromatos , Cromo , Humanos , Cromatina , Carcinogênese
8.
Genes Immun ; 24(1): 1-11, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36585519

RESUMO

The molecular processes underlying human health and disease are highly complex. Often, genetic and environmental factors contribute to a given disease or phenotype in a non-additive manner, yielding a gene-environment (G × E) interaction. In this work, we broadly review current knowledge on the impact of gene-environment interactions on human health. We first explain the independent impact of genetic variation and the environment. We next detail well-established G × E interactions that impact human health involving environmental toxicants, pollution, viruses, and sex chromosome composition. We conclude with possibilities and challenges for studying G × E interactions.


Assuntos
Interação Gene-Ambiente , Humanos , Fenótipo
9.
Semin Cancer Biol ; 76: 54-60, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34274487

RESUMO

Accessibility of DNA elements and the orchestration of spatiotemporal chromatin-chromatin interactions are critical mechanisms in the regulation of gene transcription. Thus, in an ever-changing milieu, cells mount an adaptive response to environmental stimuli by modulating gene expression that is orchestrated by coordinated changes in chromatin architecture. Correspondingly, agents that alter chromatin structure directly impact transcriptional programs in cells. Heavy metals, including hexavalent chromium (Cr(VI)), are of special interest because of their ability to interact directly with cellular protein, DNA and other macromolecules, resulting in general damage or altered function. In this review we highlight the chromium-mediated mechanisms that promote disruption of chromatin architecture and how these processes are integral to its carcinogenic properties. Emerging evidence shows that Cr(VI) targets nucleosomal architecture in euchromatin, particularly in genomic locations flanking binding sites of the essential transcription factors CTCF and AP1. Ultimately, these changes contribute to an altered chromatin state in critical gene regulatory regions, which disrupts gene transcription in functionally relevant biological processes.


Assuntos
Cromatina/efeitos dos fármacos , Cromo/efeitos adversos , Transcrição Gênica/efeitos dos fármacos , Animais , Carcinogênese/induzido quimicamente , Humanos
10.
Epigenetics ; 16(12): 1361-1376, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33319643

RESUMO

Hexavalent chromium compounds are well-established respiratory carcinogens to which humans are commonly exposed in industrial and occupational settings. In addition, natural and anthropogenic sources of these compounds contribute to the exposure of global populations through multiple routes, including dermal, ingestion and inhalation that elevate the risk of cancer by largely unresolved mechanisms. Cr(VI) has genotoxic properties that include ternary adduct formation with DNA, increases in DNA damage, mostly by double-strand break formation, and altered transcriptional responses. Our previous work using ATAC-seq showed that CTCF motifs were enriched in Cr(VI)-dependent differentially accessible chromatin, suggesting that CTCF, a key transcription factor responsible for the regulation of the transcriptome, might be a chromium target. To test this hypothesis, we investigated the effect of Cr(VI) treatment on the binding of CTCF to its cognate sites and ensuing changes in transcription-related histone modifications. Differentially bound CTCF sites were enriched by Cr(VI) treatment within transcription-related regions, specifically transcription start sites and upstream genic regions. Functional annotation of the affected genes highlighted biological processes previously associated with Cr(VI) exposure. Notably, we found that differentially bound CTCF sites proximal to the promoters of this subset of genes were frequently associated with the active histone marks H3K27ac, H3K4me3, and H3K36me3, in agreement with the concept that Cr(VI) targets CTCF in euchromatic regions of the genome. Our results support the conclusion that Cr(VI) treatment promotes the differential binding of CTCF to its cognate sites in genes near transcription-active boundaries, targeting these genes for dysregulation.


Assuntos
Metilação de DNA , Eucromatina , Cromatina , Cromo , Humanos
11.
Exp Biol Med (Maywood) ; 244(9): 752-757, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30935235

RESUMO

IMPACT STATEMENT: This mini-review highlights current evidence on the mechanisms through which hexavalent chromium (Cr(VI)) disrupts transcriptional regulation, an emerging area of interest and one of the central processes by which chromium induces carcinogenesis. Several studies have shown that Cr(VI) causes widespread DNA damage and disrupts epigenetic signatures, suggesting that chromatin may be a direct Cr(VI) target. The findings discussed here suggest that Cr(VI) disrupts transcriptional regulation by causing genomic architecture changes.


Assuntos
Cromatina/efeitos dos fármacos , Cromo/toxicidade , Transcrição Gênica/efeitos dos fármacos , Animais , Cromo/metabolismo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Código das Histonas/efeitos dos fármacos , Humanos , MicroRNAs/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores
12.
Cancer Res ; 79(6): 1124-1137, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30626627

RESUMO

Prostate cancer stem cells (CSC) are implicated in tumor initiation, cancer progression, metastasis, and the development of therapeutic-resistant disease. It is well known that the bulk of prostate cancer cells express androgen receptor (AR) and that androgens are required for prostate cancer growth, progression, and emergence of castration-resistant disease. In contrast, the small subpopulation of self-renewing CSCs exhibits an AR-negative (AR-) signature. The mechanisms underlying the absence of AR are unknown. Using CSC-like cell models isolated from clinical biopsy tissues, we identify the E3 ligase MDM2 as a key regulator of prostate CSC integrity. First, unlike what has been reported for the bulk of AR+ tumor cells where MDM2 regulates the temporal expression of AR during transcriptional activity, MDM2 in CSCs promoted the constant ubiquitination and degradation of AR, resulting in sustained loss of total AR protein. Second, MDM2 promoted CSC self-renewal, the expression of stem cell factors, and CSC proliferation. Loss of MDM2 reversed these processes and induced expression of full-length AR (and not AR variants), terminal differentiation into luminal cells, and cell death. Selectively blocking MDM2-mediated activity in combination with androgen/AR-targeted therapy may offer a novel strategy for eliminating AR- CSCs in addition to the bulk of AR+ prostate cancer cells, decreasing metastatic tumor burden and inhibiting the emergence of therapeutic resistance.Significance: These findings provide a novel mechanistic aspect of prostate cancer cell stemness that advances our understanding of the diverse transcriptional activity that bypasses AR in contributing to therapeutic resistance, tumor progression, and metastasis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/6/1124/F1.large.jpg.


Assuntos
Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores Androgênicos/metabolismo , Apoptose , Proliferação de Células , Humanos , Masculino , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Receptores Androgênicos/genética , Transdução de Sinais , Células Tumorais Cultivadas , Ubiquitinação
13.
Epigenetics ; 13(4): 363-375, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29561703

RESUMO

Hexavalent chromium compounds are well-established respiratory carcinogens used in industrial processes. While inhalation exposure constitutes an occupational risk affecting mostly chromium workers, environmental exposure from drinking water is a widespread gastrointestinal cancer risk, affecting millions of people throughout the world. Cr(VI) is genotoxic, forming protein-Cr-DNA adducts and silencing tumor suppressor genes, but its mechanism of action at the molecular level is poorly understood. Our prior work using FAIRE showed that Cr(VI) disrupted the binding of transcription factors CTCF and AP-1 to their cognate chromatin sites. Here, we used two complementary approaches to test the hypothesis that chromium perturbs chromatin organization and dynamics. DANPOS2 analyses of MNase-seq data identified several chromatin alterations induced by Cr(VI) affecting nucleosome architecture, including occupancy changes at specific genome locations; position shifts of 10 nucleotides or more; and changes in position amplitude or fuzziness. ATAC-seq analysis revealed that Cr(VI) disrupted the accessibility of chromatin regions enriched for CTCF and AP-1 binding motifs, with a significant co-occurrence of binding sites for both factors in the same region. Cr(VI)-enriched CTCF sites were confirmed by ChIP-seq and found to correlate with evolutionarily conserved sites occupied by CTCF in vivo, as determined by comparison with ENCODE-validated CTCF datasets from mouse liver. In addition, more than 30% of the Cr(VI)-enriched CTCF sites were located in promoters of genes differentially expressed from chromium treatment. Our results support the conclusion that Cr(VI) exposure promotes broad changes in chromatin accessibility and suggest that the subsequent effects on transcription regulation may result from disruption of CTCF binding and nucleosome spacing, implicating transcription regulatory mechanisms as primary Cr(VI) targets.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/genética , Cromo/efeitos adversos , Regiões Promotoras Genéticas/efeitos dos fármacos , Análise de Sequência de DNA/métodos , Animais , Sítios de Ligação , Linhagem Celular , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Água Potável/efeitos adversos , Água Potável/química , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/química , Fígado/efeitos dos fármacos , Camundongos , Ligação Proteica/efeitos dos fármacos
14.
Toxicol Sci ; 146(1): 52-64, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25820237

RESUMO

Complex mixtures of environmental agents often cause mixture-specific health effects that cannot be accounted for by a single mechanism. To study the biological effects of exposure to a mixture of chromium-VI and benzo[a]pyrene (B[a]P), often found together in the environment, we exposed mice for 60 days to 0, 55, 550, or 5500 ppb Cr(VI) in drinking water followed by 90 days of coexposure to B[a]P at 0, 1.25, 12.5, or 125 mg/kg/day and examined liver and gastrointestinal (GI) tract for exposure effects. In the liver, the mixture caused more significant histopathology than expected from the sum of effects of the individual components, while in the GI tract, Cr(VI) alone caused significant enterocyte hypertrophy and increases in cell proliferation and DNA damage that were also observed in mice coexposed to B[a]P. Expression of genes involved in drug metabolism, tumor suppression, oxidative stress, and inflammation was altered in mixed exposures relative to control and to singly exposed mice. Drug metabolism and oxidative stress genes were upregulated and tumor suppressor and inflammation genes downregulated in the proximal GI tract, whereas most markers were upregulated in the distal GI tract and downregulated in the liver. Oral exposure to Cr(VI) and B[a]P mixtures appears to have tissue-specific differential consequences in liver and GI tract that cannot be predicted from the effects of each individual toxicant. Tissue specificity may be particularly critical in cases of extended exposure to mixtures of these agents, as may happen in the occupational setting or in areas where drinking water contains elevated levels of Cr(VI).


Assuntos
Benzo(a)pireno/toxicidade , Cromo/toxicidade , Trato Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA