Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 130(7): 1196-1205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287178

RESUMO

BACKGROUND: 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS: Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS: Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS: AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.


Assuntos
Neoplasias Colorretais , Fluoruracila , Organofosfatos , Quinazolinas , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Aurora Quinase B/farmacologia , Aurora Quinase B/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos
2.
Oncogenesis ; 10(5): 41, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33993200

RESUMO

Defective DNA repair is being demonstrated to be a useful target in cancer treatment. Currently, defective repair is identified by specific gene mutations, however defective repair is a common feature of cancers without these mutations. DNA damage triggers cell cycle checkpoints that are responsible for co-ordinating cell cycle arrest and DNA repair. Defects in checkpoint signalling components such as ataxia telangiectasia mutated (ATM) occur in a low proportion of cancers and are responsible for reduced DNA repair and increased genomic instability. Here we have investigated the AURKA-PLK1 cell cycle checkpoint recovery pathway that is responsible for exit from the G2 phase cell cycle checkpoint arrest. We demonstrate that dysregulation of PP6 and AURKA maintained elevated PLK1 activation to promote premature exit from only ATM, and not ATR-dependent checkpoint arrest. Surprisingly, depletion of the B55α subunit of PP2A that negatively regulates PLK1 was capable of overcoming ATM and ATR checkpoint arrests. Dysregulation of the checkpoint recovery pathway reduced S/G2 phase DNA repair efficiency and increased genomic instability. We found a strong correlation between dysregulation of the PP6-AURKA-PLK1-B55α checkpoint recovery pathway with signatures of defective homologous recombination and increased chromosomal instability in several cancer types. This work has identified an unrealised source of G2 phase DNA repair defects and chromosomal instability that are likely to be sensitive to treatments targeting defective repair.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA