Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1864(7): 129601, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32179131

RESUMO

BACKGROUND: Escherichia coli cells contain a homolog of presumed 5-keto-4-deoxyuronate isomerase (KduI) from pectin-degrading soil bacteria, but the catalytic activity of the E. coli protein (o-KduI) was never demonstrated. METHODS: The known three-dimensional structure of E. coli o-KduI was compared with the available structures of sugar-converting enzymes. Based on the results of this analysis, sugar isomerization activity of recombinant o-KduI was tested against a panel of D-sugars and their derivatives. RESULTS: The three-dimensional structure of o-KduI exhibits a close similarity with Pyrococcus furiosus cupin-type phosphoglucose isomerase. In accordance with this similarity, o-KduI was found to catalyze interconversion of glucose-6-phosphate and fructose-6-phosphate and, less efficiently, conversion of glucuronate to fructuronate. o-KduI was hexameric in crystals but represented a mixture of inactive hexamers and active dimers in solution and contained a tightly bound Zn2+ ion. Dilution, substrate binding and Zn2+ removal shifted the hexamer ⇆ dimer equilibrium to the dimers. CONCLUSIONS: Our findings identify o-KduI as a novel phosphosugar isomerase in E. coli, whose activity may be regulated by changes in oligomeric structure. GENERAL SIGNIFICANCE: More than 5700 protein sequences are annotated as KduI, but their enzymatic activity has not been directly demonstrated. E. coli o-KduI is the first characterized member of this group, and its enzymatic activity was found to be different from the predicted activity.


Assuntos
Aldose-Cetose Isomerases/genética , Glucose-6-Fosfato Isomerase/genética , Conformação Proteica , Aldose-Cetose Isomerases/ultraestrutura , Sequência de Aminoácidos/genética , Metabolismo dos Carboidratos/genética , Catálise , Cristalografia por Raios X , Escherichia coli/enzimologia , Frutosefosfatos/genética , Glucose-6-Fosfato/genética , Glucose-6-Fosfato Isomerase/ultraestrutura , Pyrococcus furiosus/enzimologia
2.
Biochem J ; 473(14): 2097-107, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208172

RESUMO

Many prokaryotic soluble PPases (pyrophosphatases) contain a pair of regulatory adenine nucleotide-binding CBS (cystathionine ß-synthase) domains that act as 'internal inhibitors' whose effect is modulated by nucleotide binding. Although such regulatory domains are found in important enzymes and transporters, the underlying regulatory mechanism has only begun to come into focus. We reported previously that CBS domains bind nucleotides co-operatively and induce positive kinetic co-operativity (non-Michaelian behaviour) in CBS-PPases (CBS domain-containing PPases). In the present study, we demonstrate that a homodimeric ehPPase (Ethanoligenens harbinense PPase) containing an inherent mutation in an otherwise conserved asparagine residue in a loop near the active site exhibits non-co-operative hydrolysis kinetics. A similar N312S substitution in 'co-operative' dhPPase (Desulfitobacterium hafniense PPase) abolished kinetic co-operativity while causing only minor effects on nucleotide-binding affinity and co-operativity. However, the substitution reversed the effect of diadenosine tetraphosphate, abolishing kinetic co-operativity in wild-type dhPPase, but restoring it in the variant dhPPase. A reverse serine-to-asparagine replacement restored kinetic co-operativity in ehPPase. Molecular dynamics simulations revealed that the asparagine substitution resulted in a change in the hydrogen-bonding pattern around the asparagine residue and the subunit interface, allowing greater flexibility at the subunit interface without a marked effect on the overall structure. These findings identify this asparagine residue as lying at the 'crossroads' of information paths connecting catalytic and regulatory domains within a subunit and catalytic sites between subunits.


Assuntos
Asparagina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cistationina beta-Sintase/química , Nucleotídeos/metabolismo , Pirofosfatases/química , Pirofosfatases/metabolismo , Asparagina/química , Proteínas de Bactérias/genética , Bactérias Gram-Positivas/enzimologia , Cinética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Pirofosfatases/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA