Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
BMC Med ; 22(1): 158, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616269

RESUMO

ANKRD11 (ankyrin repeat domain 11) is a chromatin regulator and the only gene associated with KBG syndrome, a rare neurodevelopmental disorder. We have previously shown that Ankrd11 regulates murine embryonic cortical neurogenesis. Here, we show a novel olfactory bulb phenotype in a KBG syndrome mouse model and two diagnosed patients. Conditional knockout of Ankrd11 in murine embryonic neural stem cells leads to aberrant postnatal olfactory bulb development and reduced size due to reduction of the olfactory bulb granule cell layer. We further show that the rostral migratory stream has incomplete migration of neuroblasts, reduced cell proliferation as well as aberrant differentiation of neurons. This leads to reduced neuroblasts and neurons in the olfactory bulb granule cell layer. In vitro, Ankrd11-deficient neural stem cells from the postnatal subventricular zone display reduced migration, proliferation, and neurogenesis. Finally, we describe two clinically and molecularly confirmed KBG syndrome patients with anosmia and olfactory bulb and groove hypo-dysgenesis/agenesis. Our report provides evidence that Ankrd11 is a novel regulator of olfactory bulb development and neuroblast migration. Moreover, our study highlights a novel clinical sign of KBG syndrome linked to ANKRD11 perturbations in mice and humans.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Animais , Camundongos , Fácies , Bulbo Olfatório , Modelos Animais de Doenças
2.
Am J Med Genet A ; 191(9): 2364-2375, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226940

RESUMO

Ankyrin Repeat Domain 11 (ANKRD11) gene mutations are associated with KBG syndrome, a developmental disability that affects multiple organ systems. The function of ANKRD11 in human growth and development is not clear, but gene knockout or mutation are lethal in mice embryos and/or pups. In addition, it plays a vital role in chromatin regulation and transcription. Individuals with KBG syndrome are often misdiagnosed or remain undiagnosed until later in life. This is largely due to KBG syndrome's varying and nonspecific phenotypes as well as a lack of accessible genetic testing and prenatal screening. This study documents perinatal outcomes for individuals with KBG syndrome. We obtained data from 42 individuals through videoconferences, medical records, and emails. 45.2% of our cohort was born by C-section, 33.3% had a congenital heart defect, 23.8% were born prematurely, 23.8% were admitted to the NICU, 14.3% were small for gestational age, and 14.3% of the families had a history of miscarriage. These rates were higher in our cohort compared to the overall population, including non-Hispanic and Hispanic populations. Other reports included feeding difficulties (21.4%), neonatal jaundice (14.3%), decreased fetal movement (7.1%), and pleural effusions in utero (4.7%). Comprehensive perinatal studies about KBG syndrome and updated documentation of its phenotypes are important in ensuring prompt diagnosis and can facilitate correct management.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Animais , Camundongos , Adolescente , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/genética , Fácies , Prevalência , Deleção Cromossômica , Proteínas Repressoras/genética , Fenótipo , Documentação
3.
Front Cell Neurosci ; 17: 1130205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937181

RESUMO

Neural stem and precursor cells (NPCs) build and regenerate the central nervous system (CNS) by maintaining their pool (self-renewal) and differentiating into neurons, astrocytes, and oligodendrocytes (multipotency) throughout life. This has inspired research into pro-regenerative therapies that utilize transplantation of exogenous NPCs or recruitment of endogenous adult NPCs for CNS regeneration and repair. Recent advances in single-cell RNA sequencing and other "omics" have revealed that NPCs express not just traditional progenitor-related genes, but also genes involved in immune function. Here, we review how NPCs exert immunomodulatory function by regulating the biology of microglia, immune cells that are present in NPC niches and throughout the CNS. We discuss the role of transplanted and endogenous NPCs in regulating microglia fates, such as survival, proliferation, migration, phagocytosis and activation, in the developing, injured and degenerating CNS. We also provide a literature review on NPC-specific mediators that are responsible for modulating microglia biology. Our review highlights the immunomodulatory properties of NPCs and the significance of these findings in the context of designing pro-regenerative therapies for degenerating and diseased CNS.

4.
Stem Cell Rev Rep ; 19(4): 983-1000, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36617597

RESUMO

The mammalian adult brain contains two neural stem and precursor (NPC) niches: the subventricular zone [SVZ] lining the lateral ventricles and the subgranular zone [SGZ] in the hippocampus. From these, SVZ NPCs represent the largest NPC pool. While SGZ NPCs typically only produce neurons and astrocytes, SVZ NPCs produce neurons, astrocytes and oligodendrocytes throughout life. Of particular importance is the generation and replacement of oligodendrocytes, the only myelinating cells of the central nervous system (CNS). SVZ NPCs contribute to myelination by regenerating the parenchymal oligodendrocyte precursor cell (OPC) pool and by differentiating into oligodendrocytes in the developing and demyelinated brain. The neurosphere assay has been widely adopted by the scientific community to facilitate the study of NPCs in vitro. Here, we present a streamlined protocol for culturing postnatal and adult SVZ NPCs and OPCs from primary neurosphere cells. We characterize the purity and differentiation potential as well as provide RNA-sequencing profiles of postnatal SVZ NPCs, postnatal SVZ OPCs and adult SVZ NPCs. We show that primary neurospheres cells generated from postnatal and adult SVZ differentiate into neurons, astrocytes and oligodendrocytes concurrently and at comparable levels. SVZ OPCs are generated by subjecting primary neurosphere cells to OPC growth factors fibroblast growth factor (FGF) and platelet-derived growth factor-AA (PDGF-AA). We further show SVZ OPCs can differentiate into oligodendrocytes in the absence and presence of thyroid hormone T3. Transcriptomic analysis confirmed the identities of each cell population and revealed novel immune and signalling pathways expressed in an age and cell type specific manner.


Assuntos
Ventrículos Laterais , Transcriptoma , Camundongos , Animais , Transcriptoma/genética , Encéfalo , Neurônios , Diferenciação Celular/genética , Fatores de Crescimento de Fibroblastos , Mamíferos
5.
Stem Cell Reports ; 18(2): 519-533, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36608690

RESUMO

Demyelinating disorders of the central nervous system (CNS) occur when myelin and oligodendrocytes are damaged or lost. Remyelination and regeneration of oligodendrocytes can be achieved from endogenous oligodendrocyte precursor cells (OPCs) that reside in the adult CNS tissue. Using a cuprizone mouse model of demyelination, we show that infusion of fractalkine (CX3CL1) into the demyelinated murine brain increases de novo oligodendrocyte formation and enhances remyelination in the corpus callosum and cortical gray matter. This is achieved by increased OPC proliferation in the cortical gray matter as well as OPC differentiation and attenuation of microglia/macrophage activation both in corpus callosum and cortical gray matter. Finally, we show that activated OPCs and microglia/macrophages express fractalkine receptor CX3CR1 in vivo, and that in OPC-microglia co-cultures fractalkine increases in vitro oligodendrocyte differentiation by modulating both OPC and microglia biology. Our results demonstrate a novel pro-regenerative role of fractalkine in a demyelinating mouse model.


Assuntos
Doenças Desmielinizantes , Remielinização , Camundongos , Animais , Quimiocina CX3CL1 , Oligodendroglia/fisiologia , Bainha de Mielina , Modelos Animais de Doenças , Diferenciação Celular/fisiologia , Camundongos Endogâmicos C57BL
6.
Eur J Hum Genet ; 30(11): 1244-1254, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970914

RESUMO

Genetic variants in Ankyrin Repeat Domain 11 (ANKRD11) and deletions in 16q24.3 are known to cause KBG syndrome, a rare syndrome associated with craniofacial, intellectual, and neurobehavioral anomalies. We report 25 unpublished individuals from 22 families with molecularly confirmed diagnoses. Twelve individuals have de novo variants, three have inherited variants, and one is inherited from a parent with low-level mosaicism. The mode of inheritance was unknown for nine individuals. Twenty are truncating variants, and the remaining five are missense (three of which are found in one family). We present a protocol emphasizing the use of videoconference and artificial intelligence (AI) in collecting and analyzing data for this rare syndrome. A single clinician interviewed 25 individuals throughout eight countries. Participants' medical records were reviewed, and data was uploaded to the Human Disease Gene website using Human Phenotype Ontology (HPO) terms. Photos of the participants were analyzed by the GestaltMatcher and DeepGestalt, Face2Gene platform (FDNA Inc, USA) algorithms. Within our cohort, common traits included short stature, macrodontia, anteverted nares, wide nasal bridge, wide nasal base, thick eyebrows, synophrys and hypertelorism. Behavioral issues and global developmental delays were widely present. Neurologic abnormalities including seizures and/or EEG abnormalities were common (44%), suggesting that early detection and seizure prophylaxis could be an important point of intervention. Almost a quarter (24%) were diagnosed with attention deficit hyperactivity disorder and 28% were diagnosed with autism spectrum disorder. Based on the data, we provide a set of recommendations regarding diagnostic and treatment approaches for KBG syndrome.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Fácies , Anormalidades Dentárias/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Transtorno do Espectro Autista/genética , Inteligência Artificial , Deleção Cromossômica , Proteínas Repressoras/genética , Fenótipo , Comunicação por Videoconferência
7.
ASN Neuro ; 14: 17590914221086340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35293825

RESUMO

Oligodendrocytes, the myelinating cells of the central nervous system (CNS), perform vital functions in neural protection and communication, as well as cognition. Enhanced production of oligodendrocytes has been identified as a therapeutic approach for neurodegenerative and neurodevelopmental disorders. In the postnatal brain, oligodendrocytes are generated from the neural stem and precursor cells (NPCs) in the subventricular zone (SVZ) and parenchymal oligodendrocyte precursor cells (OPCs). Here, we demonstrate exogenous Hepatoma Derived Growth Factor (HDGF) enhances oligodendrocyte genesis from murine postnatal SVZ NPCs in vitro without affecting neurogenesis or astrogliogenesis. We further show that this is achieved by increasing proliferation of both NPCs and OPCs, as well as OPC differentiation into oligodendrocytes. In vivo results demonstrate that intracerebroventricular infusion of HDGF leads to increased oligodendrocyte genesis from SVZ NPCs, as well as OPC proliferation. Our results demonstrate a novel role for HDGF in regulating SVZ precursor cell proliferation and oligodendrocyte differentiation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/metabolismo , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ventrículos Laterais/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Oligodendroglia/metabolismo
8.
Placenta ; 119: 39-43, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35124330

RESUMO

Atypical protein kinase-c (aPKC) isoforms are important regulators of polarity and stem cell differentiation. There are three isoforms of aPKC: aPKC-ι, aPKC-ζ, and PKM-ζ. Recently, aPKC-ι was shown to regulate human trophoblast stem cell (TSC) differentiation. Compensation by remaining isoforms when a single aPKC isoform is lost can occur, but the expression pattern of aPKC-ζ in placenta is unknown. Here we show that aPKC-ι, aPKC-ζ and a new isoform, aPKC-ζ III, are expressed in trophoblasts. Therefore, studies examining the role of aPKC isoforms that control for potential compensation between aPKC isoforms are necessary to understand aPKC-mediated regulation of TSC differentiation.


Assuntos
Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Trofoblastos/enzimologia , Animais , Humanos , Camundongos Endogâmicos C57BL
9.
J Neuroimmune Pharmacol ; 17(1-2): 206-217, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33881709

RESUMO

Oligodendrocytes produce the myelin that is critical for rapid neuronal transmission in the central nervous system (CNS). Disruption of myelin has devastating effects on CNS function, as in the demyelinating disease multiple sclerosis (MS). Microglia are the endogenous immune cells of the CNS and play a central role in demyelination and repair. There is a need for new potential therapies that regulate myelination and microglia to promote repair. Agathisflavone (FAB) is a non-toxic flavonoid that is known for its anti-inflammatory and neuroprotective properties. Here, we examined the effects of FAB (5-50 µM) on myelination and microglia in organotypic cerebellar slices prepared from P10-P12 Sox10-EGFP and Plp1-DsRed transgenic mice. Immunofluorescence labeling for myelin basic protein (MBP) and neurofilament (NF) demonstrates that FAB significantly increased the proportion of MBP + /NF + axons but did not affect the overall number of oligodendroglia or axons, or the expression of oligodendroglial proteins CNPase and MBP. FAB is known to be a phytoestrogen, but blockade of α- or ß- estrogen receptors (ER) indicated the myelination promoting effects of FAB were not mediated by ER. Examination of microglial responses by Iba1 immunohistochemistry demonstrated that FAB markedly altered microglial morphology, characterized by smaller somata and reduced branching of their processes, consistent with a decreased state of activation, and increased Iba1 protein expression. The results provide evidence that FAB increases the extent of axonal coverage by MBP immunopositive oligodendroglial processes and has a modulatory effect upon microglial cells, which are important therapeutic strategies in multiple neuropathologies.


Assuntos
Animais , Camundongos
10.
J Control Release ; 338: 680-693, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34517042

RESUMO

CD33 is an immunomodulatory receptor expressed by microglia and genetically linked to Alzheimer's disease (AD) susceptibility. While antibodies targeting CD33 have entered clinical trials to treat neurodegeneration, it is unknown whether the glycan-binding properties of CD33 can be exploited to modulate microglia. Here, we use liposomes that multivalently display glycan ligands of CD33 (CD33L liposomes) to engage CD33. We find that CD33L liposomes increase phagocytosis of cultured monocytic cells and microglia in a CD33-dependent manner. Enhanced phagocytosis strongly correlates with loss of CD33 from the cell surface and internalization of liposomes. Increased phagocytosis by treatment with CD33L liposomes is dependent on a key intracellular signaling motif on CD33 as well as the glycan-binding ability of CD33. These effects are specific to trans engagement of CD33 by CD33L liposomes, as cis engagement through insertion of lipid-linked CD33L into cells produces the opposite effect on phagocytosis. Moreover, intracerebroventricular injection of CD33L liposomes into transgenic mice expressing human CD33 in the microglial cell lineage enhances phagocytosis of microglia in a CD33-dependent manner. These results demonstrate that multivalent engagement of CD33 with glycan ligands can modulate microglial cell function.


Assuntos
Doença de Alzheimer , Microglia , Doença de Alzheimer/tratamento farmacológico , Animais , Ligantes , Lipossomos , Camundongos , Fagocitose , Polissacarídeos
11.
Stem Cell Reports ; 16(8): 1968-1984, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34270934

RESUMO

Neural and oligodendrocyte precursor cells (NPCs and OPCs) in the subventricular zone (SVZ) of the brain contribute to oligodendrogenesis throughout life, in part due to direct regulation by chemokines. The role of the chemokine fractalkine is well established in microglia; however, the effect of fractalkine on SVZ precursor cells is unknown. We show that murine SVZ NPCs and OPCs express the fractalkine receptor (CX3CR1) and bind fractalkine. Exogenous fractalkine directly enhances OPC and oligodendrocyte genesis from SVZ NPCs in vitro. Infusion of fractalkine into the lateral ventricle of adult NPC lineage-tracing mice leads to increased newborn OPC and oligodendrocyte formation in vivo. We also show that OPCs secrete fractalkine and that inhibition of endogenous fractalkine signaling reduces oligodendrocyte formation in vitro. Finally, we show that fractalkine signaling regulates oligodendrogenesis in cerebellar slices ex vivo. In summary, we demonstrate a novel role for fractalkine signaling in regulating oligodendrocyte genesis from postnatal CNS precursor cells.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Ventrículos Laterais/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais , Animais , Receptor 1 de Quimiocina CX3C/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Quimiocina CX3CL1/farmacologia , Expressão Gênica/efeitos dos fármacos , Ventrículos Laterais/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Células Precursoras de Oligodendrócitos/citologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Oligodendroglia/citologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
12.
Front Cell Dev Biol ; 9: 645386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996804

RESUMO

Epigenetic and chromatin regulation of craniofacial development remains poorly understood. Ankyrin Repeat Domain 11 (ANKRD11) is a chromatin regulator that has previously been shown to control neural stem cell fates via modulation of histone acetylation. ANKRD11 gene variants, or microdeletions of the 16q24.3 chromosomal region encompassing the ANKRD11 gene, cause KBG syndrome, a rare autosomal dominant congenital disorder with variable neurodevelopmental and craniofacial involvement. Craniofacial abnormalities include a distinct facial gestalt, delayed bone age, tooth abnormalities, delayed fontanelle closure, and frequently cleft or submucosal palate. Despite this, the dramatic phenotype and precise role of ANKRD11 in embryonic craniofacial development remain unexplored. Quantitative analysis of 3D images of KBG syndromic subjects shows an overall reduction in the size of the middle and lower face. Here, we report that mice with heterozygous deletion of Ankrd11 in neural crest cells (Ankrd11nchet) display a mild midfacial hypoplasia including reduced midfacial width and a persistent open fontanelle, both of which mirror KBG syndrome patient facial phenotypes. Mice with a homozygous Ankrd11 deletion in neural crest cells (Ankrd11ncko) die at birth. They show increased severity of several clinical manifestations described for KBG syndrome, such as cleft palate, retrognathia, midfacial hypoplasia, and reduced calvarial growth. At E14.5, Ankrd11 expression in the craniofacial complex is closely associated with developing bony structures, while expression at birth is markedly decreased. Conditional deletion of Ankrd11 leads to a reduction in ossification of midfacial bones, with several ossification centers failing to expand and/or fuse. Intramembranous bones show features of delayed maturation, with bone remodeling severely curtailed at birth. Palatal shelves remain hypoplastic at all developmental stages, with a local reduction in proliferation at E13.5. Our study identifies Ankrd11 as a critical regulator of intramembranous ossification and palate development and suggests that Ankrd11nchet and Ankrd11ncko mice may serve as pre-clinical models for KBG syndrome in humans.

13.
Neurosci Lett ; 715: 134533, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31629772

RESUMO

Oligodendrocyte and neural precursor cells (OPCs and NPCs, respectively) in the central nervous system (CNS) have diverse roles in development and homeostasis. During development, precursors build the CNS. In adulthood, they maintain their ability to proliferate and generate differentiated progeny, indicating their tremendous potential to regenerate and repair injured or degenerated CNS. How can we utilize this capability? Cross-talk between neurons and OPCs may hold some clues. Neurons communicate with OPCs via two mechanisms: 1) paracrine secretion of ligands, and 2) neuronal activity and bona fide synapses with OPCs. Intriguingly, OPCs express receptors for chemokines, which are small signalling molecules produced by various cells, including neurons. In addition to inducing chemotaxis, chemokines also regulate cell proliferation, survival and differentiation. In this review, we will summarize the roles of neuronally secreted chemokines and their documented ability to directly regulate the diverse functions of OPCs and NPCs in the developing as well as adult normal and injured CNS. We will focus on the following neuronal chemokines: CCL2, CCL3, CCL20, CCL21, CXCL1, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12 and CX3CL1. We will discuss the implications for neuronal chemokine signalling in OPCs and NPCs not only in developmental myelination and adult CNS regeneration, but also in cognition, behavior, neuroinflammation and neuronal function.


Assuntos
Sistema Nervoso Central/fisiologia , Quimiocinas/fisiologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Animais , Proliferação de Células/fisiologia , Sistema Nervoso Central/citologia , Humanos , Oligodendroglia/fisiologia
14.
Neuron ; 97(3): 520-537.e6, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29395907

RESUMO

The mechanisms instructing genesis of neuronal subtypes from mammalian neural precursors are not well understood. To address this issue, we have characterized the transcriptional landscape of radial glial precursors (RPs) in the embryonic murine cortex. We show that individual RPs express mRNA, but not protein, for transcriptional specifiers of both deep and superficial layer cortical neurons. Some of these mRNAs, including the superficial versus deep layer neuron transcriptional regulators Brn1 and Tle4, are translationally repressed by their association with the RNA-binding protein Pumilio2 (Pum2) and the 4E-T protein. Disruption of these repressive complexes in RPs mid-neurogenesis by knocking down 4E-T or Pum2 causes aberrant co-expression of deep layer neuron specification proteins in newborn superficial layer neurons. Thus, cortical RPs are transcriptionally primed to generate diverse types of neurons, and a Pum2/4E-T complex represses translation of some of these neuronal identity mRNAs to ensure appropriate temporal specification of daughter neurons.


Assuntos
Córtex Cerebral/embriologia , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Neurogênese , Animais , Córtex Cerebral/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fatores do Domínio POU/metabolismo , Cultura Primária de Células , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Análise de Sequência de RNA
15.
Cell Rep ; 21(13): 3970-3986, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281841

RESUMO

Adult neural stem cells (NSCs) derive from embryonic precursors, but little is known about how or when this occurs. We have addressed this issue using single-cell RNA sequencing at multiple developmental time points to analyze the embryonic murine cortex, one source of adult forebrain NSCs. We computationally identify all major cortical cell types, including the embryonic radial precursors (RPs) that generate adult NSCs. We define the initial emergence of RPs from neuroepithelial stem cells at E11.5. We show that, by E13.5, RPs express a transcriptional identity that is maintained and reinforced throughout their transition to a non-proliferative state between E15.5 and E17.5. These slowly proliferating late embryonic RPs share a core transcriptional phenotype with quiescent adult forebrain NSCs. Together, these findings support a model wherein cortical RPs maintain a core transcriptional identity from embryogenesis through to adulthood and wherein the transition to a quiescent adult NSC occurs during late neurogenesis.


Assuntos
Células-Tronco Adultas/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Neurais/metabolismo , Análise de Célula Única , Animais , Proliferação de Células/genética , Córtex Cerebral/citologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/genética , Camundongos Endogâmicos C57BL , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
16.
Neuron ; 94(3): 500-516.e9, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28472653

RESUMO

During development, newborn interneurons migrate throughout the embryonic brain. Here, we provide evidence that these interneurons act in a paracrine fashion to regulate developmental oligodendrocyte formation. Specifically, we show that medial ganglionic eminence (MGE) interneurons secrete factors that promote genesis of oligodendrocytes from glially biased cortical precursors in culture. Moreover, when MGE interneurons are genetically ablated in vivo prior to their migration, this causes a deficit in cortical oligodendrogenesis. Modeling of the interneuron-precursor paracrine interaction using transcriptome data identifies the cytokine fractalkine as responsible for the pro-oligodendrocyte effect in culture. This paracrine interaction is important in vivo, since knockdown of the fractalkine receptor CX3CR1 in embryonic cortical precursors, or constitutive knockout of CX3CR1, causes decreased numbers of oligodendrocyte progenitor cells (OPCs) and oligodendrocytes in the postnatal cortex. Thus, in addition to their role in regulating neuronal excitability, interneurons act in a paracrine fashion to promote the developmental genesis of oligodendrocytes.


Assuntos
Encéfalo/embriologia , Quimiocina CX3CL1/metabolismo , Interneurônios/metabolismo , Eminência Mediana/citologia , Células-Tronco Neurais/metabolismo , Neurogênese , Oligodendroglia/metabolismo , Receptores de Quimiocinas/genética , Animais , Receptor 1 de Quimiocina CX3C , Diferenciação Celular , Movimento Celular , Córtex Cerebral/citologia , Embrião de Mamíferos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Receptores de Quimiocinas/metabolismo
17.
Cell Rep ; 17(4): 1022-1036, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760310

RESUMO

Maternal diabetes is known to adversely influence brain development in offspring. Here, we provide evidence that this involves the circulating metabolite methylglyoxal, which is increased in diabetes, and its detoxifying enzyme, glyoxalase 1 (Glo1), which when mutated is associated with neurodevelopmental disorders. Specifically, when Glo1 levels were decreased in embryonic mouse cortical neural precursor cells (NPCs), this led to premature neurogenesis and NPC depletion embryonically and long-term alterations in cortical neurons postnatally. Increased circulating maternal methylglyoxal caused similar changes in embryonic cortical precursors and neurons and long-lasting changes in cortical neurons and NPCs in adult offspring. Depletion of embryonic and adult NPCs was also observed in murine offspring exposed to a maternal diabetic environment. Thus, the Glo1-methylglyoxal pathway integrates maternal and NPC metabolism to regulate neural development, and perturbations in this pathway lead to long-lasting alterations in adult neurons and NPC pools.


Assuntos
Células-Tronco Adultas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Lactoilglutationa Liase/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Neurais/metabolismo , Aldeído Pirúvico/metabolismo , Transdução de Sinais , Animais , Animais Recém-Nascidos , Comportamento Animal , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Diabetes Mellitus Experimental/patologia , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Gravidez
18.
BMC Dev Biol ; 16(1): 27, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27484899

RESUMO

BACKGROUND: The Hedgehog (HH) signalling pathway regulates cardiomyogenesis in vivo and in differentiating P19 embryonal carcinoma (EC) cells, a mouse embryonic stem (mES) cell model. To further assess the transcriptional role of HH signalling during cardiomyogenesis in stem cells, we studied the effects of overexpressing GLI2, a primary transducer of the HH signalling pathway, in mES cells. RESULTS: Stable GLI2 overexpression resulted in an enhancement of cardiac progenitor-enriched genes, Mef2c, Nkx2-5, and Tbx5 during mES cell differentiation. In contrast, pharmacological blockade of the HH pathway in mES cells resulted in lower expression of these genes. Mass spectrometric analysis identified the chromatin remodelling factor BRG1 as a protein which co-immunoprecipitates with GLI2 in differentiating mES cells. We then determined that BRG1 is recruited to a GLI2-specific Mef2c gene element in a HH signalling-dependent manner during cardiomyogenesis in P19 EC cells, a mES cell model. CONCLUSIONS: Thus, we propose a mechanism where HH/GLI2 regulates the expression of Mef2c by recruiting BRG1 to the Mef2c gene, most probably via chromatin remodelling, to ultimately regulate in vitro cardiomyogenesis.


Assuntos
DNA Helicases/metabolismo , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Proteínas Hedgehog/genética , Técnicas In Vitro , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Espectrometria de Massas , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Transdução de Sinais , Fatores de Transcrição/genética , Proteína Gli2 com Dedos de Zinco
19.
Dev Cell ; 32(1): 31-42, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25556659

RESUMO

Ankrd11 is a potential chromatin regulator implicated in neural development and autism spectrum disorder (ASD) with no known function in the brain. Here, we show that knockdown of Ankrd11 in developing murine or human cortical neural precursors caused decreased proliferation, reduced neurogenesis, and aberrant neuronal positioning. Similar cellular phenotypes and aberrant ASD-like behaviors were observed in Yoda mice carrying a point mutation in the Ankrd11 HDAC-binding domain. Consistent with a role for Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin and colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target genes were altered in Yoda neural precursors. Moreover, the Ankrd11 knockdown-mediated decrease in precursor proliferation was rescued by inhibiting histone acetyltransferase activity or expressing HDAC3. Thus, Ankrd11 is a crucial chromatin regulator that controls histone acetylation and gene expression during neural development, thereby providing a likely explanation for its association with cognitive dysfunction and ASD.


Assuntos
Transtorno Autístico/patologia , Proliferação de Células , Cromatina/genética , Proteínas de Ligação a DNA/fisiologia , Histona Desacetilases/metabolismo , Neurogênese/genética , Acetilação , Animais , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Comportamento Animal , Biomarcadores/metabolismo , Western Blotting , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Feminino , Perfilação da Expressão Gênica , Histona Desacetilases/química , Histona Desacetilases/genética , Histonas/metabolismo , Imunoprecipitação , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA