RESUMO
The woody bamboos (Bambusoideae) exhibit distinctive biological traits within Poaceae, such as highly lignified culms, rapid shoot growth, monocarpic mass flowering and nutlike or fleshy caryopses. Much of the remarkable morphological diversity across the subfamily exists within a single hexaploid clade, the paleotropical woody bamboos (PWB), making it ideal to investigate the factors underlying morphological evolution in woody bamboos. However, the origin and biogeographical history of PWB remain elusive, as does the effect of environmental factors on the evolution of their morphological characters. We generated a robust and time-calibrated phylogeny of PWB using single nucleotide polymorphisms retrieved from optimized double digest restriction site associated DNA sequencing, and explored the evolutionary trends of habit, inflorescence, and caryopsis type in relation to environmental factors including climate, soil, and topography. We inferred that the PWB started to diversify across the Oligocene-Miocene boundary and formed four major clades, that is, Melocanninae, Racemobambosinae s.l. (comprising Dinochloinae, Greslanlinae, Racemobambosinae s.str. and Temburongiinae), Hickeliinae and Bambusinae s.l. (comprising Bambusinae s.str. plus Holttumochloinae). The ancestor of PWB was reconstructed as having erect habit, indeterminate inflorescence and basic caryopsis. The characters including climbing/scrambling habit, determinate inflorescence, and nucoid/bacoid caryopsis have since undergone multiple changes and reversals during the diversification of PWB. The evolution of all three traits was correlated with, and hence likely influenced by, aspects of climate, topography, and soil, with climate factors most strongly correlated with morphological traits, and soil factors least so. However, topography had more influence than climate or soil on the evolution of erect habit, whereas both factors had greater effect on the evolution of bacoid caryopsis than did soil. Our results provide novel insights into morphological diversity and adaptive evolution in bamboos for future ecological and evolutionary research.
Assuntos
Evolução Biológica , Filogenia , Poaceae/genética , Poaceae/anatomia & histologiaRESUMO
The study of adrenal disorders is a key component of scientific research, driven by the complex innervation, unique structure, and essential functions of the adrenal glands. This review explores the use of non-traditional animal models for studying congenital adrenal hyperplasia. It highlights the advantages, limitations, and relevance of these models, including domestic ferrets, dogs, guinea pigs, golden hamsters, pigs, and spiny mice. We provide a detailed analysis of the histological structure, steroidogenesis pathways, and genetic characteristics of these animal models. The morphological and functional similarities between the adrenal glands of spiny mice and humans highlight their potential as an important avenue for future research.
RESUMO
BACKGROUND AND AIMS: The grass genus Urochloa (Brachiaria) sensu lato includes forage crops that are important for beef and dairy industries in tropical and sub-tropical Africa, South America and Oceania/Australia. Economically important species include U. brizantha, U. decumbens, U. humidicola, U. mutica, U. arrecta, U. trichopus, U. mosambicensis and Megathyrsus maximus, all native to the African continent. Perennial growth habits, large, fast growing palatable leaves, intra- and interspecific morphological variability, apomictic reproductive systems and frequent polyploidy are widely shared within the genus. The combination of these traits probably favoured the selection for forage domestication and weediness, but trait emergence across Urochloa cannot be modelled, as a robust phylogenetic assessment of the genus has not been conducted. We aim to produce a phylogeny for Urochloa that includes all important forage species, and identify their closest wild relatives (crop wild relatives). Finally, we will use our phylogeny and available trait data to infer the ancestral states of important forage traits across Urochloa s.l. and model the evolution of forage syndromes across the genus. METHODS: Using a target enrichment sequencing approach (Angiosperm 353), we inferred a species-level phylogeny for Urochloa s.l., encompassing 54 species (~40 % of the genus) and outgroups. Phylogenies were inferred using a multispecies coalescent model and maximum likelihood method. We determined the phylogenetic placement of agriculturally important species and identified their closest wild relatives, or crop wild relatives, based on well-supported monophyly. Further, we mapped key traits associated with Urochloa forage crops to the species tree and estimated ancestral states for forage traits along branch lengths for continuous traits and at ancestral nodes in discrete traits. KEY RESULTS: Agricultural species belong to five independent clades, including U. brizantha and U. decumbens lying in a previously defined species complex. Crop wild relatives were identified for these clades supporting previous sub-generic groupings in Urochloa based on morphology. Using ancestral trait estimation models, we find that five morphological traits that correlate with forage potential (perennial growth habits, culm height, leaf size, a winged rachis and large seeds) independently evolved in forage clades. CONCLUSIONS: Urochloa s.l. is a highly diverse genus that contains numerous species with agricultural potential, including crop wild relatives that are currently underexploited. All forage species and their crop wild relatives naturally occur on the African continent and their conservation across their native distributions is essential. Genomic and phenotypic diversity in forage clade species and their wild relatives need to be better assessed both to develop conservation strategies and to exploit the diversity in the genus for improved sustainability in Urochloa cultivar production.
Assuntos
Filogenia , Brachiaria/genética , Brachiaria/anatomia & histologia , Brachiaria/crescimento & desenvolvimento , África , Evolução Biológica , Poaceae/genética , Poaceae/anatomia & histologia , Genoma de PlantaRESUMO
Poales are one of the most species-rich, ecologically and economically important orders of plants and often characterise open habitats, enabled by unique suites of traits. We test six hypotheses regarding the evolution and assembly of Poales in open and closed habitats throughout the world, and examine whether diversification patterns demonstrate parallel evolution. We sampled 42% of Poales species and obtained taxonomic and biogeographic data from the World Checklist of Vascular Plants database, which was combined with open/closed habitat data scored by taxonomic experts. A dated supertree of Poales was constructed. We integrated spatial phylogenetics with regionalisation analyses, historical biogeography and ancestral state estimations. Diversification in Poales and assembly of open and closed habitats result from dynamic evolutionary processes that vary across lineages, time and space, most prominently in tropical and southern latitudes. Our results reveal parallel and recurrent patterns of habitat and trait transitions in the species-rich families Poaceae and Cyperaceae. Smaller families display unique and often divergent evolutionary trajectories. The Poales have achieved global dominance via parallel evolution in open habitats, with notable, spatially and phylogenetically restricted divergences into strictly closed habitats.
Assuntos
Ecossistema , Poaceae , Filogenia , Evolução BiológicaRESUMO
Malignant neoplasms, including pancreatic cancer and melanoma, are major global health challenges. This study investigates melanoma pancreatic syndrome, a rare hereditary tumor syndrome associated with CDKN2A gene mutations. CDKN2A mutations contribute to a lifetime risk of melanoma ranging from 28% to 67%. This study reports the clinical features of six individuals with CDKN2A mutations and identifies recurrent alterations such as c.307_308del, c.159G>C and c.71G>C. It highlights the need for CDKN2A mutation testing in suspected cases of familial atypical multiple mole melanoma. Clinically significant variants show associations with melanoma and pancreatic cancer. The challenges of treating individuals with CDKN2A mutations are discussed, and the lack of specific targeted therapies is highlighted. Preclinical studies suggest a potential benefit of CDK4/6 inhibitors, although clinical trials show mixed results. This study underscores the importance of continued research into improved diagnostic and therapeutic strategies to address the complexities of hereditary cancer syndromes.
RESUMO
Background: A discussion on social media led to the formation of a multidisciplinary group working on this project to highlight women's contributions to science. The role of marginalised groups in science has been a topic of much discussion, but data on these contributions are largely lacking. Our motivation for the development of this dataset was not only to highlight names of plant genera that honour women, but to enrich this information with data that would allow the names, roles and lives of these women to be shared more widely with others, both researchers and data sources like Wikidata. Amplification of the contributions of women to botany through multiple means will enable the community to better recognise and celebrate the role of this particular marginalised group in the history and development of science. New information: The innovative approach of our study resulted in a dataset that is dynamic, expansive and widely shared. We have published a static dataset with this paper and have also created a dynamic dataset by linking flowering plant genera and the women in whose honour those genera were named in Wikidata. This concurrent addition of the data to Wikidata, a linked open data repository, enabled it to be enriched, queried and proactively shared during the whole process of dataset creation and into the future. This innovative workflow allowed wide, open participation throughout the research process. The methodology and workflows applied can be used to create future datasets celebrating and amplifying the contributions of marginalised groups in science.
RESUMO
PURPOSE: We aimed to assess the efficacy and safety of denosumab in postmenopausal women with primary hyperparathyroidism (PHPT)-related osteoporosis and chronic kidney disease (CKD). METHODS: Women over 50 years of age with PHPT or postmenopausal osteoporosis (PMO) were retrospectively recruited into this longitudinal study. These PHPT and PMO groups were further categorized into subgroups based on the presence of CKD (Glomerular filtration rate (GFR) < 60 mL/min/1.73 m2). All patients were given denosumab over 24 months due to verified osteoporosis. The primary outcomes were changes in bone mineral density (BMD) and serum calcium levels. RESULTS: 145 postmenopausal women median age 69 [63;77] were recruited and assigned to one of the subgroups: PHPT patients with CKD (n = 22), PHPT patients without CKD (n = 38), PMO patients with CKD (n = 17) and PMO patients without CKD (n = 68). Denosumab treatment significantly increased BMD in patients with PHPT-related osteoporosis and CKD: median T-score L1-L4 from -2.0 to -1.35 (p < 0.001), femur neck from -2.4 to -2.1 (p = 0.012), radius 33% from -3.2 to -3 (p < 0.05)) at 24 months. Changes in BMD were similar in all four studied groups compared to baseline. A marked decline in calcium was noted in the primary study group of PHPT with CKD (median ΔCa = -0.24 mmol/L p < 0.001), compared to PHPT without CKD (median ΔCa = -0.08 mmol/L p < 0.001) and PMO with or without CKD. Denosumab treatment was well-tolerated with no serious adverse events. CONCLUSION: Denosumab treatment was similarly effective at increasing BMD in patients with PHPT and PMO with and without renal insufficiency. The calcium lowering effects of denosumab were most significant in patients with PHPT and CKD. The safety of denosumab did not differ among participants with and without CKD.
Assuntos
Conservadores da Densidade Óssea , Hiperparatireoidismo Primário , Osteoporose Pós-Menopausa , Osteoporose , Insuficiência Renal Crônica , Insuficiência Renal , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Denosumab/uso terapêutico , Cálcio , Estudos Longitudinais , Hiperparatireoidismo Primário/complicações , Hiperparatireoidismo Primário/tratamento farmacológico , Estudos Retrospectivos , Osteoporose/etiologia , Osteoporose/induzido quimicamente , Densidade Óssea , Osteoporose Pós-Menopausa/tratamento farmacológico , Conservadores da Densidade Óssea/efeitos adversos , Insuficiência Renal/complicações , Insuficiência Renal/induzido quimicamente , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológicoRESUMO
More than 275 million people in the world are carriers of a heterozygous mutation of the CFTR gene, associated with cystic fibrosis, the most common autosomal recessive disease among Caucasians. Some recent studies assessed the association between carriers of CFTR variants and some pathologies, including cancer risk. The aim of this study is to analyze the landscape of germline pathogenic heterozygous CFTR variants in patients with diagnosed malignant neoplasms. For the first time in Russia, we evaluated the frequency of CFTR pathogenic variants by whole-genome sequencing in 1800 patients with cancer and compared this with frequencies of CFTR variants in the control group (1825 people) adjusted for age and 10,000 healthy individuals. In the issue, 47 out of 1800 patients (2.6%) were carriers of CFTR pathogenic genetic variants: 0.028 (42/1525) (2.8%) among breast cancer patients, 0.017 (3/181) (1.7%) among colorectal cancer patients and 0.021 (2/94) (2.1%) among ovarian cancer patients. Pathogenic CFTR variants were found in 52/1825 cases (2.85%) in the control group and 221 (2.21%) in 10,000 healthy individuals. Based on the results of the comparison, there was no significant difference in the frequency and distribution of pathogenic variants of the CFTR gene, which is probably due to the study limitations. Obviously, additional studies are needed to assess the clinical significance of the heterozygous carriage of CFTR pathogenic variants in the development of various pathologies in the future, particularly cancer.
Assuntos
Neoplasias da Mama , Regulador de Condutância Transmembrana em Fibrose Cística , Humanos , Feminino , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Predisposição Genética para Doença , Mutação , Células GerminativasRESUMO
The Hickeliinae (Poaceae: Bambusoideae) is an ecologically and economically significant subtribe of tropical bamboos restricted to Madagascar, Comoros, Reunion Island, and a small part of continental Africa (Tanzania). Because these bamboos rarely flower, field identification is challenging, and inferring the evolutionary history of Hickeliinae from herbarium specimens is even more so. Molecular phylogenetic work is critical to understanding this group of bamboos. Here, comparative analysis of 22 newly sequenced plastid genomes showed that members of all genera of Hickeliinae share evolutionarily conserved plastome structures. We also determined that Hickeliinae plastome sequences are informative for phylogenetic reconstructions. Phylogenetic analysis showed that all genera of Hickeliinae are monophyletic, except for Nastus, which is paraphyletic and forms two distant clades. The type species of Nastus (Clade II) is endemic to Reunion Island and is not closely related to other sampled species of Nastus endemic to Madagascar (Clade VI). Clade VI (Malagasy Nastus) is sister to the Sokinochloa + Hitchcockella clade (Clade V), and both clades have a clumping habit with short-necked pachymorph rhizomes. The monotypic Decaryochloa is remarkable in having the longest floret in Bambuseae and forms a distinct Clade IV. Clade III, which has the highest generic diversity, consists of Cathariostachys, Perrierbambus, Sirochloa, and Valiha, which are also morphologically diverse. This work provides significant resources for further genetic and phylogenomic studies of Hickeliinae, an understudied subtribe of bamboo.
RESUMO
The adrenal glands are important endocrine organs that play a major role in the stress response. Some adrenal glands abnormalities are treated with hormone replacement therapy, which does not address physiological requirements. Modern technologies make it possible to develop gene therapy drugs that can completely cure diseases caused by mutations in specific genes. Congenital adrenal hyperplasia (CAH) is an example of such a potentially treatable monogenic disease. CAH is an autosomal recessive inherited disease with an overall incidence of 1:9500-1:20,000 newborns. To date, there are several promising drugs for CAH gene therapy. At the same time, it remains unclear how new approaches can be tested, as there are no models for this disease. The present review focuses on modern models for inherited adrenal gland insufficiency and their detailed characterization. In addition, the advantages and disadvantages of various pathological models are discussed, and ways of further development are suggested.
Assuntos
Hiperplasia Suprarrenal Congênita , Recém-Nascido , Humanos , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/terapia , Glândulas Suprarrenais , Mutação , IncidênciaRESUMO
Tissue autofluorescence of fixed tissue sections is a major concern of fluorescence microscopy. The adrenal cortex emits intense intrinsic fluorescence that interferes with signals from fluorescent labels, resulting in poor-quality images and complicating data analysis. We used confocal scanning laser microscopy imaging and lambda scanning to characterize the mouse adrenal cortex autofluorescence. We evaluated the efficacy of tissue treatment methods in reducing the intensity of the observed autofluorescence, such as trypan blue, copper sulfate, ammonia/ethanol, Sudan Black B, TrueVIEWTM Autofluorescence Quenching Kit, MaxBlockTM Autofluorescence Reducing Reagent Kit, and TrueBlackTM Lipofuscin Autofluorescence Quencher. Quantitative analysis demonstrated autofluorescence reduction by 12-95%, depending on the tissue treatment method and excitation wavelength. TrueBlackTM Lipofuscin Autofluorescence Quencher and MaxBlockTM Autofluorescence Reducing Reagent Kit were the most effective treatments, reducing the autofluorescence intensity by 89-93% and 90-95%, respectively. The treatment with TrueBlackTM Lipofuscin Autofluorescence Quencher preserved the specific fluorescence signals and tissue integrity, allowing reliable detection of fluorescent labels in the adrenal cortex tissue. This study demonstrates a feasible, easy-to-perform, and cost-effective method to quench tissue autofluorescence and improve the signal-to-noise ratio in adrenal tissue sections for fluorescence microscopy.
Assuntos
Córtex Suprarrenal , Lipofuscina , Camundongos , Animais , Corantes , Fluorescência , Microscopia de Fluorescência , Azul Tripano , Indicadores e Reagentes , Microscopia Confocal/métodosRESUMO
BACKGROUND AND AIMS: Diploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C4 tropical forage grasses originating from Africa are important for food security and the environment, often being planted in marginal lands worldwide. We aimed to characterize the nature of their genomes, the repetitive DNA and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species. METHODS: Some 362 forage grass accessions from international germplasm collections were studied, and ploidy was determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis were used to identify chromosomes and genomes in Urochloa accessions belonging to the 'brizantha' and 'humidicola' agamic complexes and U. maxima. KEY RESULTS: Genome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs. In situ hybridization with a combination of repetitive DNA and genomic DNA probes identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids. CONCLUSIONS: We suggest a new coherent nomenclature for the genomes present. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for Urochloa brizantha, U. decumbens and U. ruziziensis, and do not consider diploids and polyploids of single species as cytotypes. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and assist in measuring and conserving biodiversity in grasslands.
Assuntos
Brachiaria , Poaceae , Poaceae/genética , Brachiaria/genética , Poliploidia , Ploidias , GenômicaRESUMO
Madagascar's unique biota is heavily affected by human activity and is under intense threat. Here, we review the current state of knowledge on the conservation status of Madagascar's terrestrial and freshwater biodiversity by presenting data and analyses on documented and predicted species-level conservation statuses, the most prevalent and relevant threats, ex situ collections and programs, and the coverage and comprehensiveness of protected areas. The existing terrestrial protected area network in Madagascar covers 10.4% of its land area and includes at least part of the range of the majority of described native species of vertebrates with known distributions (97.1% of freshwater fishes, amphibians, reptiles, birds, and mammals combined) and plants (67.7%). The overall figures are higher for threatened species (97.7% of threatened vertebrates and 79.6% of threatened plants occurring within at least one protected area). International Union for Conservation of Nature (IUCN) Red List assessments and Bayesian neural network analyses for plants identify overexploitation of biological resources and unsustainable agriculture as the most prominent threats to biodiversity. We highlight five opportunities for action at multiple levels to ensure that conservation and ecological restoration objectives, programs, and activities take account of complex underlying and interacting factors and produce tangible benefits for the biodiversity and people of Madagascar.
Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Animais , Humanos , Teorema de Bayes , Biota , Madagáscar , Mamíferos , PlantasRESUMO
Parathyroid hormone (PTH) is one of the key regulators of calcium and phosphate metabolism in the body, controlling bone metabolism and ion excretion by the kidneys. At present, attempts to use PTH as a therapeutic agent have been associated with side-effects, the nature of which is not always clear and predictable. In addition, it is known that in vivo impairment of PTH post-receptor signaling is associated with atypical differentiation behavior not only of bone cells, but also of connective tissues, including adipose tissue. In this work, we studied the functional responses of multipotent mesenchymal stromal cells (MSCs) to the action of PTH at the level of single cells. We used MSCs isolated from the periosteum and subcutaneous adipose tissue to compare characteristics of cell responses to PTH. We found that the hormone can activate three key responses via its receptor located on the surface of MSCs: single transients of calcium, calcium oscillations, and hormone-activated smooth increase in intracellular calcium. These types of calcium responses led to principally different cellular responses of MSCs. The cAMP-dependent smooth increase of intracellular calcium was associated with pro-osteogenic action of PTH, whereas phospholipase C dependent calcium oscillations led to a decrease in osteogenic differentiation intensity. Different variants of calcium responses are in dynamic equilibrium. Suppression of one type of response leads to increased activation of another type and, accordingly, to a change in the effect of PTH on cell differentiation.
Assuntos
Cálcio , Osteogênese , Cálcio/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/farmacologia , Sinalização do CálcioRESUMO
Introduction: Vulto-van Silfhout-de Vries Syndrome (VSVS; OMIM#615828) is a rare hereditary disease associated with impaired intellectual development and speech, delayed psychomotor development, and behavioral anomalies, including autistic behavioral traits and poor eye contact. To date, 27 patients with VSVS have been reported in the literature. Materials and Methods: We describe a 23-year-old male patient with autism spectrum disorder (ASD) who was admitted to the gastroenterological hospital with signs of pseudomembranous colitis. ASD was first noted in the patient at the age of 2.5 years. Later, he developed epileptic seizures and important growth retardation. Prior to the hospitalization, chromosomal aberrations, Fragile X syndrome, and aminoacidopathies/aminoacidurias associated with ASD were excluded. Whole-genome sequencing (WGS) was prescribed to the patient at 23 years old. Results: The patient had a heterozygous carrier of "de novo" variant c.662C > T (p.S221L) in exon 4 of the DEAF1 gene. c.662C > T had not been previously described in genomic databases. According to the ACMG criteria, this missense variant was considered to be pathogenic. VSVS was diagnosed in the patient. Conclusions: The phenotype of the patient is very similar to the data presented in the world literature. However, growth retardation and cachexia, which have not been described previously in the articles, are of interest.
RESUMO
Anhydrobiosis, an adaptive ability to withstand complete desiccation, in the nonbiting midge Polypedilum vanderplanki, is associated with the emergence of new multimember gene families, including a group of 27 genes of late embryogenesis abundant (LEA) proteins (PvLea). To obtain new insights into the possible functional specialization of these genes, we investigated the expression and localization of PvLea genes in a P. vanderplanki-derived cell line (Pv11), capable of anhydrobiosis. We confirmed that all but two PvLea genes identified in the genome of P. vanderplanki are expressed in Pv11 cells. Moreover, PvLea genes are induced in Pv11 cells in response to anhydrobiosis-inducing trehalose treatment in a manner highly similar to the larvae of P. vanderplanki during the real induction of anhydrobiosis. Then, we expanded our previous data on PvLEA proteins localization in mammalian cells that were obtained using C-terminal fusions of PvLEA proteins and green fluorescent protein (GFP). We investigated PvLEA localization using N- and C-terminal fusions with GFP in Pv11 cells and the Sf9 insect cell line. We observed an inconsistency of PvLEA localization between different fusion types and different cell cultures, that needs to be taken into account when using PvLEA in the engineering of anhydrobiotic cell lines.
RESUMO
CONTEXT: Excessive production of growth hormone causes marked multiorgan changes in patients with acromegaly, which may involve epigenetic mechanisms. OBJECTIVE: To evaluate differences in circulating microRNAs (miRNAs) associated with chronic growth hormone overproduction in adults. DESIGN AND SETTING: A cross-sectional case-control study was conducted at a tertiary medical center. PARTICIPANTS: We enrolled 12 consecutive patients with acromegaly along with 12 age- and sex-matched controls in the discovery phase of the study and then extended this cohort to 47 patients with acromegaly and 28 healthy controls for the validation study. MAIN OUTCOME MEASURES: Plasma miRNAs were quantified by next-generation sequencing (NGS) in the discovery phase. Levels of selected miRNAs were validated on extended cohorts using reverse transcription quantitative polymerase chain reaction (RT-qPCR), compared between groups, and correlated with clinical parameters. RESULTS: Based on NGS data, we selected 3 plasma miRNAs downregulated in patients with acromegaly compared to healthy controls: miR-4446-3p -1.317 (P = 0.001), miR-215-5p -3.040 (P = 0.005), and miR-342-5p -1.875 (P = 0.013) without multiplicity correction for all 3 miRNAs. These results were confirmed by RT-qPCR in the validation phase for 2 miRNAs out of 3: miR-4446-3p (P < 0.001, Padjusted < 0.001), area under the receiver-operator curve (AUC) 0.862 (95% CI 0.723-0.936; P < 0.001) and miR-215-5p (P < 0.001, Padjusted < 0.001), AUC 0.829 (95% CI 0.698-0.907; P < 0.001) to differentiate patients with acromegaly from healthy controls. CONCLUSIONS: In a 2-phase experiment using 2 different techniques we found and validated the downregulation of plasma miR-4446-3p and miR-215-5p in patients with acromegaly compared to healthy subjects, which makes them promising biomarkers for further research.
Assuntos
Acromegalia/diagnóstico , MicroRNA Circulante/metabolismo , MicroRNAs/metabolismo , Acromegalia/sangue , Acromegalia/genética , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Estudos de Casos e Controles , MicroRNA Circulante/sangue , Estudos Transversais , Regulação para Baixo , Feminino , Voluntários Saudáveis , Hormônio do Crescimento Humano/sangue , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto JovemRESUMO
The advancement of precision medicine critically depends on the robustness and specificity of the carriers used for the targeted delivery of effector molecules in the human body. Numerous nanocarriers have been explored in vivo, to ensure the precise delivery of molecular cargos via tissue-specific targeting, including the endocrine part of the pancreas, thyroid, and adrenal glands. However, even after reaching the target organ, the cargo-carrying vehicle needs to enter the cell and then escape lysosomal destruction. Most artificial nanocarriers suffer from intrinsic limitations that prevent them from completing the specific delivery of the cargo. In this respect, extracellular vesicles (EVs) seem to be the natural tool for payload delivery due to their versatility and low toxicity. However, EV-mediated delivery is not selective and is usually short-ranged. By inserting the viral membrane fusion proteins into exosomes, it is possible to increase the efficiency of membrane recognition and also ease the process of membrane fusion. This review describes the molecular details of the viral-assisted interaction between the target cell and EVs. We also discuss the question of the usability of viral fusion proteins in developing extracellular vesicle-based nanocarriers with a higher efficacy of payload delivery. Finally, this review specifically highlights the role of Gag and RNA binding proteins in RNA sorting into EVs.
Assuntos
Exossomos/metabolismo , Transporte de RNA , Proteínas Virais de Fusão/metabolismo , Proteínas da Matriz Viral/metabolismo , Animais , Interações Hospedeiro-Patógeno , Humanos , Fusão de MembranaRESUMO
Until now, the ability to reversibly halt cellular processes has been limited to cryopreservation and several forms of anabiosis observed in living organisms. In this paper we show that incubation of living cells with a solution containing ~50 mM neodymium induces a rapid shutdown of intracellular organelle movement and all other evidence of active metabolism. We have named this state REEbernation (derived from the terms REE (rare earth elements) and hibernation) and found that the process involves a rapid replacement of calcium with neodymium in membranes and organelles of a cell, allowing it to maintain its shape and membrane integrity under extreme conditions, such as low pressure. Furthermore, phosphate exchange is blocked as a result of non-dissolvable neodymium salts formation, which "discharged" the cell. We further showed that REEbernation is characterized by an immediate cessation of transcriptional activity in observed cells, providing an intriguing opportunity to study a snapshot of gene expression at a given time point. Finally, we found that the REEbernation state is reversible, and we could restore the metabolism and proliferation capacity of the cells. The REEbernation, in addition to being an attractive model to further investigate the basic mechanisms of cell metabolism control, also provides a new method to reversibly place a cell into "on-hold" mode, opening opportunities to develop protocols for biological samples fixation with a minimum effect on the omics profile for biomedical needs.