Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Vaccine X ; 15: 100410, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38075432

RESUMO

In a long-term immunogenicity study (1100 days post vaccination) in local Thai dogs the immune response of the oral rabies vaccine SPBN GASGAS was compared to those elicited by a commercial inactivated vaccine using immunobridging. Based on the detection of rabies virus binding (rVBA) and rabies virus neutralizing antibodies (rVNA) as measured by ELISA and Rapid Fluorescent Focus Inhibition Test (RFFIT) the long-term immune response in dogs vaccinated orally with the SPBNA GASGAS strain of rabies vaccine in a bait was non-inferior to a conventional inactivated rabies vaccine. The outcome of this study supports extending the originally claimed duration of immunity (DOI) of SPBN GASGAS after oral vaccination for dogs from 6 to 30 months.

2.
Viruses ; 15(6)2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37376704

RESUMO

Dog-mediated rabies is endemic in much of Indonesia, including Bali. Most dogs in Bali are free-roaming and often inaccessible for parenteral vaccination without special effort. Oral rabies vaccination (ORV) is considered a promising alternative to increase vaccination coverage in these dogs. This study assessed immunogenicity in local dogs in Bali after oral administration of the highly attenuated third-generation rabies virus vaccine strain SPBN GASGAS. Dogs received the oral rabies vaccine either directly or by being offered an egg-flavored bait that contained a vaccine-loaded sachet. The humoral immune response was then compared with two further groups of dogs: a group that received a parenteral inactivated rabies vaccine and an unvaccinated control group. The animals were bled prior to vaccination and between 27 and 32 days after vaccination. The blood samples were tested for the presence of virus-binding antibodies using ELISA. The seroconversion rate in the three groups of vaccinated dogs did not differ significantly: bait: 88.9%; direct-oral: 94.1%; parenteral: 90.9%; control: 0%. There was no significant quantitative difference in the level of antibodies between orally and parenterally vaccinated dogs. This study confirms that SPBN GASGAS is capable of inducing an adequate immune response comparable to a parenteral vaccine under field conditions in Indonesia.


Assuntos
Doenças do Cão , Vacina Antirrábica , Vírus da Raiva , Raiva , Cães , Animais , Raiva/prevenção & controle , Raiva/veterinária , Raiva/epidemiologia , Indonésia/epidemiologia , Vacinação/veterinária , Anticorpos Antivirais , Administração Oral , Doenças do Cão/prevenção & controle , Doenças do Cão/epidemiologia
3.
Vaccines (Basel) ; 11(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36851185

RESUMO

(1) Background: The oral vaccination of free-roaming dogs against rabies has been developed as a promising complementary tool for mass dog vaccination. However, no oral rabies vaccine has provided efficacy data in dogs according to international standards. (2) Methods: To test the immunogenicity and efficacy of the third-generation oral rabies virus vaccine strain, SPBN GASGAS, in domestic dogs, dogs were offered an egg-flavoured bait containing 3.0 mL of the vaccine (107.5 FFU/mL) or a placebo egg-flavoured bait. Subsequently, these 25 vaccinated and 10 control animals were challenged approximately 6 months later with a dog rabies virus isolate. Blood samples were collected at different time points postvaccination and examined by ELISA and RFFIT. (3) Results: All but 1 of the 25 vaccinated dogs survived the challenge infection; meanwhile, all 10 control dogs succumbed to rabies. The serology results showed that all 25 vaccinated dogs seroconverted in ELISA (>40% PB); meanwhile, only 13 of the 25 vaccinated dogs tested seropositive ≥ 0.5 IU/mL) in RFFIT. (4) Conclusions: The SPBN GASGAS rabies virus vaccine meets the efficacy requirements for live oral rabies vaccines as laid down by the European Pharmacopoeia and the WOAH Terrestrial Manual. SPBN GASGAS already fulfilled the safety requirements for oral rabies vaccines targeted at dogs. Hence, the egg-flavoured bait containing SPBN GASGAS is the first oral vaccine bait that complies with WOAH recommendations for the intended use of oral vaccination of free-roaming dogs against rabies.

4.
Viruses ; 14(10)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36298691

RESUMO

Oral vaccination of wildlife has shown to be a very effective management tool in rabies control. Evaluation of the genetic stability of vaccine viruses before distributing vaccine baits in the environment is essential because all available oral rabies vaccines, including the genetically engineered rabies virus vaccine strain SPBN GASGAS (Rabitec), are based on replication-competent viruses. To evaluate the genetic stability of this vaccine strain, five serial passages of the Master Seed Virus (MSV) in the production cell line BHK21 Cl13 were performed. Furthermore, to test possible reversion to virulence, a back-passage study in suckling mouse brain (SMB) was performed. Subsequently, the pooled 5th SMB passage was inoculated intracerebrally (i.c.) in adult and suckling mice. The full genome sequences of the isolated 5th passage, in vivo and in vitro, were compared at both the consensus and the quasispecies level with the MSV. Additionally, the full genome sequence of the 6th SMB passage from the individual animals was determined and compared. Full-length integration of the double glycoprotein and modified base substitutions at amino acid position 194 and 333 of the glycoprotein could be verified in all 5th and 6th passage samples. Overall, 11 single nucleotide polymorphisms (SNPs) were detected in the 5th pooled SMB passage, 4 with frequency between 10 and 20%, and 7 with between 2.5 and 10%. SNPs that resulted in amino acid exchange were found in genes: N (one SNP), G (four SNPs), and L (three SNPs). However, none of these SNPs were associated with reversion to virulence since all adult mice inoculated i.c. with this material survived. In the individual samples of the 6th SMB passage 24 additional SNPs (>2.5%) were found, of which only 1 SNP (L-gene, position 6969) had a prevalence of >50% in 3 of 17 samples. The obtained results confirmed the stable expression of genetic modifications and the genetic stability of the consensus strain after serial in vivo and in vitro passaging.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Camundongos , Glicoproteínas/genética , Aminoácidos
5.
Front Vet Sci ; 8: 737250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760958

RESUMO

Dog-mediated rabies is endemic throughout Africa. While free-roaming dogs that play a crucial role in rabies transmission are often inaccessible for parenteral vaccination during mass dog vaccination campaigns, oral rabies vaccination (ORV) is considered to be a promising alternative to increase vaccination coverage in these hard-to-reach dogs. The acceptance of ORV as an efficient supplementary tool is still low, not least because of limited immunogenicity and field trial data in local dogs. In this study, the immunogenicity of the highly attenuated 3rd-generation oral rabies vaccine strain SPBN GASGAS in local free-roaming dogs from Namibia was assessed by determining the immune response in terms of seroconversion for up to 56 days post-vaccination. At two study sites, free-roaming dogs were vaccinated by administering the vaccine either by direct oral administration or via a vaccine-loaded egg bait. Pre- and post-vaccination blood samples were tested for rabies virus neutralizing as well as binding antibodies using standard serological assays. A multiple logistic regression (MLR) analysis was performed to determine a possible influence of study area, vaccination method, and vaccine dose on the seroconversion rate obtained. About 78% of the dogs vaccinated by the oral route seroconverted (enzyme-linked immunosorbent assay, ELISA), though the seroconversion as determined by a rapid fluorescence focus inhibition test (RFFIT) was much lower. None of the factors examined had a significant effect on the seroconversion rate. This study confirms the immunogenicity of the vaccine strain SPBN GASGAS and the potential utility of ORV for the control of dog-mediated rabies in African dogs.

6.
Acta Vet Scand ; 63(1): 40, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645487

RESUMO

BACKGROUND: To prevent re-emergence of wildlife-mediated rabies in Finland, oral rabies vaccine baits are distributed every year during autumn in southern Finland in a vaccination zone bordering Russia. Recently, Finland introduced a 3rd generation oral rabies virus vaccine bait. By analysing bait uptake and seroconversion in red foxes and raccoon dogs, the field efficacy of this new vaccine strain, SPBN GASGAS, was compared with the originally used highly efficacious 1st generation vaccine SAD B19. RESULTS: Overall, 74.6% and 53.9% of the animals submitted from the vaccination area after the campaigns (2017-2019) tested positive for the presence of the bait marker and anti-rabiesvirus antibodies, respectively. No significant difference was observed between years, species and vaccine. CONCLUSIONS: The field performance of the highly attenuated 3rd generation oral rabies vaccine, SPBN GASGAS, in terms of bait uptake and seroconversion was similar to the 1st generation vaccine, SAD B19, and therefore offers a suitable alternative.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Administração Oral , Animais , Finlândia , Raposas , Raiva/prevenção & controle , Raiva/veterinária , Cães Guaxinins , Vacinação/veterinária
7.
Viruses ; 13(7)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34372588

RESUMO

Oral vaccination of dogs against rabies has the potential to achieve mass coverage and thus deplete the virus of its most important reservoir host species. There is, however, no established non-invasive method to evaluate vaccine release in the oral cavity, following bait ingestion. In this study, two pre-selected marker methods in conjunction with their acceptance were assessed in local Thai dogs. Shelter dogs (n = 47) were offered one of four randomized bait formulations; bait type A-, containing Green S (E142) in a fructose solution; type B-, containing Patent Blue V (E131) in a fructose solution; type C-, containing the medium used for delivery of oral rabies vaccine in baits commercially produced; and type D-, containing denatonium benzoate, which was to serve as the negative control, due to its perceived bitterness. Patent Blue V was found to possess overall stronger dyeing capacities compared to Green S. Furthermore, there was no significant difference in the acceptance or bait handling of Patent Blue V baits compared to those containing the oral rabies vaccine medium alone, suggesting the potential use of this dye as a surrogate for rabies vaccine when testing newly developed bait formats.


Assuntos
Vacina Antirrábica/administração & dosagem , Vacinação/métodos , Vacinas/administração & dosagem , Administração Oral , Animais , Corantes/administração & dosagem , Doenças do Cão/prevenção & controle , Cães , Boca , Raiva/prevenção & controle , Vacinação/veterinária
8.
Viruses ; 13(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805404

RESUMO

(1) Background: Thailand has made significant progress in reducing the number of human and animal rabies cases. However, control and elimination of the last remaining pockets of dog-mediated rabies have shown to be burdensome, predominantly as a result of the large numbers of free-roaming dogs without an owner that cannot be restrained without special efforts and therefore remain unvaccinated. To reach these dogs, the feasibility, and benefits of oral rabies vaccination (ORV) as a complementary tool has been examined under field conditions. (2) Methods: ORV of dogs was tested in five study areas of four provinces in Thailand. In these areas, sites with free-roaming dogs were identified with the support of local municipal workers and dog caretakers. ORV teams visited each of five study areas and distributed rabies vaccine (SPBN GASGAS) in three bait formats that were offered to the dogs using a hand-out and retrieval model. The three bait types tested included: egg-flavored baits, egg-flavored baits pasted with commercially available cat liquid snack, and boiled-intestine baits. A dog offered a vaccine bait was considered vaccinated when the discarded sachet was perforated or if a dog chewed vaccine bait at least 5 times before it swallowed the bait, including the sachet. (3) Results: A total of 2444 free-roaming dogs considered inaccessible for parenteral vaccination were identified at 338 sites. As not all dogs were approachable, 79.0% were offered a bait; of these dogs, 91.6% accepted the bait and subsequently 83.0% were considered successfully vaccinated. (4) Conclusion: Overall, 65.6% of the free-roaming dogs at these sites were successfully vaccinated by the oral route. Such a significant increase of the vaccination coverage of the free-roaming dog population could interrupt the rabies transmission cycle and offers a unique opportunity to reach the goal to eliminate dog-mediated human rabies in Thailand by 2030.


Assuntos
Animais Selvagens/virologia , Erradicação de Doenças/normas , Vacina Antirrábica/administração & dosagem , Raiva/prevenção & controle , Raiva/veterinária , Vacinação/normas , Vacinação/veterinária , Administração Oral , Animais , Erradicação de Doenças/métodos , Erradicação de Doenças/estatística & dados numéricos , Cães/virologia , Feminino , Masculino , Vacinação/métodos
9.
Vaccines (Basel) ; 9(1)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466701

RESUMO

The live genetically-engineered oral rabies virus (RABV) variant SPBN GASGAS induces long-lasting immunity in foxes and protection against challenge with an otherwise lethal dose of RABV field strains both after experimental oral and parenteral routes of administration. Induction of RABV-specific binding antibodies and immunoglobulin isotypes (IgM, total IgG, IgG1, IgG2) were comparable in orally and parenterally vaccinated foxes. Differences were only observed in the induction of virus-neutralizing (VNA) titers, which were significantly higher in the parenterally vaccinated group. The dynamics of rabies-specific antibodies pre- and post-challenge (365 days post vaccination) suggest the predominance of type-1 immunity protection of SPBN GASGAS. Independent of the route of administration, in the absence of IgG1 the immune response to SPBN GAGAS was mainly IgG2 driven. Interestingly, vaccination with SPBN GASGAS does not cause significant differences in inducible IFN-γ production in vaccinated animals, indicating a relatively weak cellular immune response during challenge. Notably, the parenteral application of SPBN GASGAS did not induce any adverse side effects in foxes, thus supporting safety studies of this oral rabies vaccine in various species.

10.
Vaccines (Basel) ; 8(4)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019605

RESUMO

Applied research is crucial in pushing the boundaries and finding a solution to the age-old problem of dog-mediated rabies. Although oral vaccination of dogs is considered to have great potential in mass dog vaccination campaigns and could have far-reaching benefits, it is perhaps the most ignored of all available tools in efforts to eliminate dog-mediated rabies, not least because of limited data on immunogenicity, efficacy, and safety of potential oral rabies vaccine candidates. In this study, the long-term immunogenicity in local Thai dogs after oral administration of the highly attenuated 3rd generation rabies virus vaccine strain SPBN GASGAS was assessed. The oral rabies vaccine was administered to dogs by either direct oral administration (n = 10) or by offering a vaccine loaded intestine bait (n = 15). The humoral immune response was then compared to three groups of dogs; a group that received a parenteral delivered inactivated rabies vaccine (n = 10), a group offered a placebo intestine bait (n = 7), and a control group (n = 4) for an observation period of 365 days. There was no significant difference in the immune response of dogs that received oral and parenteral vaccine in terms of magnitude, kinetics, and persistence of both rabies virus (RABV) neutralizing (RFFIT) and binding (ELISA) antibodies. Although the single parenteral injection of an inactivated rabies vaccine mounted a slightly higher humoral immune response than the orally delivered live vaccine, RABV specific antibodies of both types were still detectable after one year in most animals for all treatment groups and resulted in no difference in seropositivity. Characterization of rabies specific antibodies revealed two main classes of antibodies involved in the immune response of dogs vaccinated. While IgM antibodies were the first to appear, the succeeding IgG response was mainly IgG2 dominated independent of the vaccine type used. The results support the view that SPBN GASGAS induces a sustained detectable immune response in local dogs both after direct oral administration and via bait application.

11.
Sci Rep ; 10(1): 2919, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076025

RESUMO

Oral rabies vaccination (ORV) is highly effective in foxes and raccoon dogs, whereas for unknown reasons the efficacy of ORV in other reservoir species is less pronounced. To investigate possible variations in species-specific cell tropism and local replication of vaccine virus, different reservoir species including foxes, raccoon dogs, raccoons, mongooses, dogs and skunks were orally immunised with a highly attenuated, high-titred GFP-expressing rabies virus (RABV). Immunofluorescence and RT-qPCR screenings revealed clear differences among species suggesting host specific limitations to ORV. While for responsive species the palatine tonsils (tonsilla palatina) were identified as a main site of virus replication, less virus dissemination was observed in the tonsils of rather refractory species. While our comparison of vaccine virus tropism emphasizes the important role that the tonsilla palatina plays in eliciting an immune response to ORV, our data also indicate that other lymphoid tissues may have a more important role than originally anticipated. Overall, these data support a model in which the susceptibility to oral live RABV vaccine infection of lymphatic tissue is a major determinant in vaccination efficacy. The present results may help to direct future research for improving vaccine uptake and efficacy of oral rabies vaccines under field conditions.


Assuntos
Reservatórios de Doenças/virologia , Tecido Linfoide/imunologia , Mucosa/imunologia , Vacina Antirrábica/imunologia , Raiva/imunologia , Vacinação , Administração Oral , Animais , Anticorpos Antivirais/imunologia , Raposas/imunologia , Raposas/virologia , Proteínas de Fluorescência Verde/metabolismo , Tecido Linfoide/virologia , Mucosa/virologia , Especificidade de Órgãos , Tonsila Palatina/imunologia , Tonsila Palatina/virologia , RNA Viral/genética , Raiva/sangue , Raiva/veterinária , Raiva/virologia , Vírus da Raiva/fisiologia , Especificidade da Espécie , Tropismo , Carga Viral , Replicação Viral/fisiologia
12.
Biologicals ; 64: 83-95, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32089431

RESUMO

Rabies is a major neglected zoonotic disease and causes a substantial burden in the Asian region. Currently, Pacific Oceania is free of rabies but enzootic areas throughout southeast Asia represent a major risk of disease introduction to this region. On September 25-26, 2019, researchers, government officials and related stakeholders met at an IABS conference in Bangkok, Thailand to engage on the topic of human rabies mediated by dogs. The objective of the meeting was focused upon snowballing efforts towards achieving substantial progress in rabies prevention, control and elimination within Asia by 2030, and thereby to safeguard the Pacific region. Individual sessions focused upon domestic animal, wildlife and human vaccination; the production and evaluation of quality, safety and efficacy of existing rabies biologics; and the future development of new products. Participants reviewed the progress to date in eliminating canine rabies by mass vaccination, described supportive methods to parenteral administration by oral vaccine application, considered updated global and local approaches at human prophylaxis and discussed the considerable challenges ahead. Such opportunities provide continuous engagement on disease management among professionals at a trans-disciplinary level and promote new applied research collaborations in a modern One Health context.


Assuntos
Doenças do Cão , Vacina Antirrábica/uso terapêutico , Raiva , Zoonoses , Animais , Congressos como Assunto , Doenças do Cão/epidemiologia , Doenças do Cão/prevenção & controle , Cães , Humanos , Raiva/epidemiologia , Raiva/prevenção & controle , Tailândia , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
13.
J Wildl Dis ; 56(2): 452-456, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31750771

RESUMO

The small Indian mongoose (Herpestes auropunctatus) is a rabies reservoir in areas of the Caribbean including Puerto Rico, but no rabies vaccination program targeting this host exists. We used two derivatives of iophenoxic acid (IPA) to evaluate placebo oral rabies vaccine bait uptake by mongooses in southwestern Puerto Rico. We hand-distributed baits at an application rate of 200 baits/km2 at three, 400 ha, sites during autumn 2016 and spring 2017. Each site contained 90-100 cage traps in a 100 ha central trapping area. We used ethyl-IPA as a biological marker during the autumn and methyl-IPA during the spring. We live captured mongooses for 10 consecutive days, beginning 1 wk following bait application. We obtained a serum sample from captured mongooses and analyzed the sera for ethyl- and methyl-IPA by liquid chromatography-mass spectrometry. During autumn 2016, 63% (55/87) mongooses sampled were positive for ethyl-IPA. In spring 2017, 69% (85/123) of mongooses were positive for methyl-IPA. Pooling seasons, accounting for recaptures between years, and disregarding marker type, 74% (133/179) unique mongooses were positive for IPA biomarker, indicating bait consumption during either the autumn, spring, or both trials. We conclude that distributing baits at an application rate of 200 baits/km2 is sufficient to reach over 60% of the target mongoose population in dry forest habitats of Puerto Rico.


Assuntos
Reservatórios de Doenças/veterinária , Vacina Antirrábica/imunologia , Raiva/veterinária , Administração Oral , Animais , Biomarcadores/sangue , Reservatórios de Doenças/virologia , Herpestidae , Hispânico ou Latino , Ácido Iopanoico/administração & dosagem , Ácido Iopanoico/metabolismo , Porto Rico , Raiva/prevenção & controle , Vacina Antirrábica/administração & dosagem , Vacinação
14.
Trop Med Infect Dis ; 4(3)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487795

RESUMO

Introduction: To achieve the global goal of canine-mediated human rabies elimination by 2030 there is an urgent need to scale-up mass dog vaccination activities in regions with large dog populations that are difficult to access; a common situation in much of India. Oral rabies vaccination may enable the vaccination of free-roaming dogs that are inaccessible to parenteral vaccination, and is considered a promising complementary measure to parenteral mass dog vaccination campaigns. WHO and OIE have published detailed minimum requirements for rabies vaccines and baits to be used for this purpose, requiring that baits must not only be well-accepted by the target population but must also efficiently release the vaccine in the oral cavity. For oral rabies vaccination approaches to be successful, it is necessary to develop baits which have a high uptake by the target population, are culturally accepted and amenable to mass production. The aim of this study was to compare the interest and uptake rates of meat-based and an egg-based prototype bait constructs by free roaming dogs in Goa, India. Methods: Three teams randomly distributed two prototype baits; an egg-flavoured bait and a commercial meat dog food (gravy) flavoured bait. The outcomes of consumption were recorded and compared between baits and dog variables. Results: A total of 209 egg-bait and 195 gravy-bait distributions were recorded and analysed. No difference (p = 0.99) was found in the percentage of dogs interested in the baits when offered. However, significantly more dogs consumed the egg-bait than the gravy-bait; 77.5% versus 68.7% (p = 0.04). The release of the blue-dyed water inside the sachet in the oral cavity of the animals was significant higher in the dogs consuming an egg-bait compared to the gravy-bait (73.4% versus 56.7%, p = 0.001). Conclusions: The egg-based bait had a high uptake amongst free roaming dogs and also enabled efficient release of the vaccine in the oral cavity, whilst also avoiding culturally relevant materials of bovine or porcine meat products.

15.
J Vis Exp ; (147)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31205294

RESUMO

The small Indian mongoose (Herpestes auropunctatus) is a reservoir of rabies virus (RABV) in Puerto Rico and comprises over 70% of animal rabies cases reported annually. The control of RABV circulation in wildlife reservoirs is typically accomplished by a strategy of oral rabies vaccination (ORV). Currently no wildlife ORV program exists in Puerto Rico. Research into oral rabies vaccines and various bait types for mongooses has been conducted with promising results. Monitoring the success of ORV relies on estimating bait uptake by target species, which typically involves evaluating a change in RABV neutralizing antibodies (RVNA) post vaccination. This strategy may be difficult to interpret in areas with an active wildlife ORV program or in areas where RABV is enzootic and background levels of RVNA are present in reservoir species. In such situations, a biomarker incorporated with the vaccine or the bait matrix may be useful. We offered 16 captive mongooses placebo ORV baits containing ethyl-iophenoxic acid (et-IPA) in concentrations of 0.4% and 1% inside the bait and 0.14% in the external bait matrix. We also offered 12 captive mongooses ORV baits containing methyl-iophenoxic acid (me-IPA) in concentrations of 0.035%, 0.07% and 0.14% in the external bait matrix. We collected a serum sample prior to bait offering and then weekly for up to eight weeks post offering. We extracted Iophenoxic acids from sera into acetonitrile and quantified using liquid chromatography/mass spectrometry. We analyzed sera for et-IPA or me-IPA by liquid chromatography-mass spectrometry. We found adequate marking ability for at least eight and four weeks for et- and me-IPA, respectively. Both IPA derivatives could be suitable for field evaluation of ORV bait uptake in mongooses. Due to the longevity of the marker in mongoose sera, care must be taken to not confound results by using the same IPA derivative during consecutive evaluations.


Assuntos
Herpestidae/sangue , Ácido Iopanoico/análise , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/imunologia , Raiva/imunologia , Vacinação , Administração Oral , Animais , Biomarcadores/sangue , Calibragem , Controle de Qualidade , Vírus da Raiva/imunologia , Padrões de Referência
16.
Sci Rep ; 9(1): 6783, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043646

RESUMO

Oral vaccines aid immunization of hard to reach animal populations but often contain live-attenuated viruses that pose risks of reversion to virulence or residual pathogenicity. Human risk assessment is crucial prior to vaccine field distribution but there is currently no standardized approach. We mapped exposure pathways by which distribution of oral vaccines may result in inoculation into people and applied a Markov chain to estimate the number of severe adverse events. We simulated three oral rabies vaccination (ORV) campaigns: (1) first generation ORV (SAD-B19) in foxes, (2) SAD-B19 in dogs, and (3) third generation ORV (SPBN GASGAS) in dogs. The risk of SAD-B19-associated human deaths was predicted to be low (0.18 per 10 million baits, 95% CI: 0.08, 0.36) when distributed to foxes, but, consistent with international concern, 19 times greater (3.35 per 10 million baits, 95% CI: 2.83, 3.98) when distributed to dogs. We simulated no deaths from SPBN GAS-GAS. Human deaths during dog campaigns were particularly sensitive to dog bite rate, and during wildlife campaigns to animal consumption rate and human contact rate with unconsumed baits. This model highlights the safety of third generation rabies vaccines and serves as a platform for standardized approaches to inform risk assessments.


Assuntos
Vacina Antirrábica/administração & dosagem , Vírus da Raiva/imunologia , Raiva/veterinária , Vacinação/veterinária , Vacinas Atenuadas/administração & dosagem , Zoonoses/prevenção & controle , Administração Oral , Animais , Cães , Raposas , Raiva/imunologia , Raiva/prevenção & controle , Vacina Antirrábica/imunologia , Vacinas Atenuadas/química , Vacinas Atenuadas/imunologia , Zoonoses/imunologia , Zoonoses/virologia
17.
Vaccine ; 37(33): 4750-4757, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-29042202

RESUMO

To test the immunogenicity and efficacy of a new oral rabies virus vaccine strain SPBN GASGAS in wildlife target species, one group of foxes and two groups of raccoon dogs were offered a bait containing 1.7 ml of the vaccine (106.6 FFU/ml; 106.8 FFU/dose) and subsequently challenged approximately 180 days later with a fox rabies virus isolate. One group of raccoon dogs (n=30) received the same challenge dose (100.7 MICLD50/ml) as the red foxes (n=29). The other group with raccoon dogs (n=28) together with 8 animals that received the vaccine dose by direct instillation into the oral cavity (DIOC) were infected with a 40-fold higher dose of the challenge virus (102.3 MICLD50/ml). All but one of the 29 vaccinated foxes survived the challenge infection; meanwhile all 12 control foxes succumbed to rabies. Twenty-eight of 30 vaccinated raccoon dogs challenged with the same dose survived the infection, however only six of 12 control animals succumbed. When the higher challenge dose was administered, all 12 control animals died from rabies and all 36 vaccinated animals (28 baited plus 8 DIOC) survived. Blood samples were collected at different time points post vaccination and examined by both RFFIT and ELISA. The kinetics of the measured immune response was similar for both species, although in RFFIT slightly higher values were observed in foxes than in raccoon dogs. However, the immune response as measured in ELISA was identical for both species. The oral rabies virus vaccine SPBN GASGAS meets the efficacy requirements for live rabies virus vaccines as laid down by the European Pharmacopoeia.


Assuntos
Vacina Antirrábica/uso terapêutico , Vírus da Raiva/imunologia , Vírus da Raiva/patogenicidade , Raiva/imunologia , Raiva/prevenção & controle , Administração Oral , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Raposas , Imunidade Humoral/fisiologia , Masculino , Raiva/virologia , Vacina Antirrábica/imunologia , Cães Guaxinins
18.
Vaccine ; 37(33): 4743-4749, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-29054727

RESUMO

During the 20th century parenteral vaccination of dogs at central-point locations was the foundation of successful canine rabies elimination programs in numerous countries. However, countries that remain enzootic for canine rabies have lower infrastructural development compared to countries that have achieved elimination, which may make traditional vaccination methods less successful. Alternative vaccination methods for dogs must be considered, such as oral rabies vaccine (ORV). In 2016, a traditional mass dog vaccination campaign in Haiti was supplemented with ORV to improve vaccination coverage and to evaluate the use of ORV in dogs. Blisters containing live-attenuated, vaccine strain SPBNGAS-GAS were placed in intestine bait and distributed to dogs by hand. Serum was collected from 107 dogs, aged 3-12 months with no reported prior rabies vaccination, pre-vaccination and from 78/107 dogs (72.9%) 17 days post-vaccination. The rapid florescent focus inhibition test (RFFIT) was used to detect neutralizing antibodies and an ELISA to detect rabies binding antibodies. Post-vaccination, 38/41 (92.7%) dogs that received parenteral vaccine had detectable antibody (RFFIT >0.05 IU/mL), compared to 16/27 (59.3%, p < 0.01) dogs that received ORV or 21/27 (77.8%) as measured by ELISA (>40% blocking, p < 0.05). The fate of 291 oral vaccines was recorded; 283 dogs (97.2%) consumed the bait; 272 dogs (93.4%) were observed to puncture the blister, and only 14 blisters (4.8%) could not be retrieved by vaccinators and were potentially left in the environment. Pre-vaccination antibodies (RFFIT >0.05 IU/mL) were detected in 10/107 reportedly vaccine-naïve dogs (9.3%). Parenteral vaccination remains the most reliable method for ensuring adequate immune response in dogs, however ORV represents a viable strategy to supplement existing parental vaccination campaigns in hard-to-reach dog populations. The hand-out model reduces the risk of unintended contact with ORV through minimizing vaccine blisters left in the community.


Assuntos
Vacina Antirrábica/uso terapêutico , Raiva/prevenção & controle , Administração Oral , Animais , Anticorpos Antivirais/imunologia , Cães , Raiva/imunologia , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Vírus da Raiva/patogenicidade , Vacinação
19.
Sci Rep ; 8(1): 16599, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413745

RESUMO

Rabies in the Greater Kudu (Tragelaphus strepsiceros) in Namibia is unique and found in such magnitude as has not been reported elsewhere in southern Africa. Reasons as to why Kudus appear to be exceptionally susceptible to rabies still remain speculative at best. Because the current severe rabies endemic in Kudus continues to have an enormous negative impact on the Namibian agricultural sector, we set out to question existing dogmas regarding the epidemiology of the disease in a unique experimental setting. In addition, we explored effective measures to protect these antelopes. Although we were able to confirm high susceptibly of kudus for rabies and sporadic horizontal rabies virus transmission to contact animals, we contend that these observations cannot plausibly explain the rapid spread of the disease in Kudus over large territories. Since parenteral vaccination of free-roaming Kudus is virtually impossible, oral rabies vaccination using modified life virus vaccines with a high safety profile would be the ultimate solution to the problem. In a proof-of-concept study using a 3rd generation oral rabies virus vaccine construct (SPBN GASGAS) we found evidence that Kudus can be vaccinated by the oral route and protected against a subsequent rabies infection. In a second phase, more targeted studies need to be initiated by focusing on optimizing oral vaccine uptake and delivery.


Assuntos
Antílopes/virologia , Ensaios de Triagem em Larga Escala/métodos , Vacina Antirrábica/uso terapêutico , Vírus da Raiva/imunologia , Raiva/veterinária , Animais , Feminino , Imunização , Masculino , Raiva/prevenção & controle , Raiva/transmissão , Raiva/virologia
20.
Front Vet Sci ; 5: 91, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868616

RESUMO

In order to obtain Marketing Authorization for an oral rabies vaccine in the European Union, not only safety studies in the target species, red fox and raccoon dog, are required. Since baits are distributed unsupervised in the environment, specific safety studies in selected non-target species are compulsory. Furthermore, oral rabies vaccines are based on live, replication-competent viruses and thus distinct safety studies in the target species for such type of vaccines are also mandatory. Here, the results of these safety studies in target and selected non-target species for a 3rd generation oral rabies virus vaccine construct, SPBN GASGAS (Rabitec), are presented. The studies included the following species; red fox, raccoon dog, domestic dog, domestic cat, domestic pig, wild rodents. The following safety topics were investigated; overdose, repeated dose, dissemination, shedding, horizontal and vertical transmission. It was shown that SPBN GASGAS did not cause disease or any other adverse reaction in vaccinated animals and naïve contact animals. The vaccine did not disseminate within the host beyond the site of entry. No horizontal transmission was observed in wild rodents. In the target species, there was evidence that in a few cases horizontal transmission of vaccine virus could have occurred under these experimental conditions; most likely immediately after vaccine administration. The vaccine construct SPBN GASGAS meets therefore the latest revised minimal safety requirements as laid down in the European Pharmacopoeia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA