Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biotechnol Biofuels ; 9: 158, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27468310

RESUMO

BACKGROUND: Engineering of the yeast Saccharomyces cerevisiae for improved utilization of pentose sugars is vital for cost-efficient cellulosic bioethanol production. Although endogenous hexose transporters (Hxt) can be engineered into specific pentose transporters, they remain subjected to glucose-regulated protein degradation. Therefore, in the absence of glucose or when the glucose is exhausted from the medium, some Hxt proteins with high xylose transport capacity are rapidly degraded and removed from the cytoplasmic membrane. Thus, turnover of such Hxt proteins may lead to poor growth on solely xylose. RESULTS: The low affinity hexose transporters Hxt1, Hxt36 (Hxt3 variant), and Hxt5 are subjected to catabolite degradation as evidenced by a loss of GFP fused hexose transporters from the membrane upon glucose depletion. Catabolite degradation occurs through ubiquitination, which is a major signaling pathway for turnover. Therefore, N-terminal lysine residues of the aforementioned Hxt proteins predicted to be the target of ubiquitination, were replaced for arginine residues. The mutagenesis resulted in improved membrane localization when cells were grown on solely xylose concomitantly with markedly stimulated growth on xylose. The mutagenesis also improved the late stages of sugar fermentation when cells are grown on both glucose and xylose. CONCLUSIONS: Substitution of N-terminal lysine residues in the endogenous hexose transporters Hxt1 and Hxt36 that are subjected to catabolite degradation results in improved retention at the cytoplasmic membrane in the absence of glucose and causes improved xylose fermentation upon the depletion of glucose and when cells are grown in d-xylose alone.

2.
J Biol Chem ; 285(33): 25324-31, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20522557

RESUMO

The mannitol transporter from Escherichia coli, EII(mtl), belongs to a class of membrane proteins coupling the transport of substrates with their chemical modification. EII(mtl) is functional as a homodimer, and it harbors one high affinity mannitol-binding site in the membrane-embedded C domain (IIC(mtl)). To localize this binding site, 19 single Trp-containing mutants of EII(mtl) were biosynthetically labeled with 5-fluorotryptophan (5-FTrp) and mixed with azi-mannitol, a substrate analog acting as a Förster resonance energy transfer (FRET) acceptor. Typically, for mutants showing FRET, only one 5-FTrp was involved, whereas the 5-FTrp from the other monomer was too distant. This proves that the mannitol-binding site is asymmetrically positioned in dimeric IIC(mtl). Combined with the available two-dimensional projection maps of IIC(mtl), it is concluded that a second resting binding site is present in this transporter. Active transport of mannitol only takes place when EII(mtl) becomes phosphorylated at Cys(384) in the cytoplasmic B domain. Stably phosphorylated EII(mtl) mutants were constructed, and FRET experiments showed that the position of mannitol in IIC(mtl) remains the same. We conclude that during the transport cycle, the phosphorylated B domain has to move to the mannitol-binding site, located in the middle of the membrane, to phosphorylate mannitol.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Manitol/análogos & derivados , Manitol/metabolismo , Modelos Biológicos , Proteínas de Transporte de Monossacarídeos/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosforilação , Ligação Proteica/genética , Ligação Proteica/fisiologia , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Espectrometria de Fluorescência
3.
Biochemistry ; 48(23): 5284-90, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19402710

RESUMO

In this work, four single tryptophan (Trp) mutants of the dimeric mannitol transporter of Escherichia coli, EII(mtl), are characterized using Trp and 5-fluoroTrp (5-FTrp) fluorescence spectroscopy. The four positions, 97, 114, 126, and 133, are located in a region shown by recent studies to be involved in the mannitol translocation process. To spectroscopically distinguish between the Trp positions in each subunit of dimeric EII(mtl), 5-FTrp was biosynthetically incorporated because of its much simpler photophysics compared to those of Trp. The steady-state and time-resolved fluorescence methodologies used point out that all four positions are in structured environments, both in the absence and in the presence of a saturating concentration of mannitol. The fluorescence decay of all 5-FTrp-containing mutants was highly homogeneous, suggesting similar microenvironments for both probes per dimer. However, Stern-Volmer quenching experiments using potassium iodide indicate different solvent accessibilities for the two probes at positions 97 and 133. A 5 A two-dimensional (2D) projection map of the membrane-embedded IIC(mtl) dimer showing 2-fold symmetry is available. The results of this work are in better agreement with a 7 A projection map from a single 2D crystal on which no symmetry was imposed.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas de Transporte de Monossacarídeos/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Triptofano/análogos & derivados , Triptofano/química , Sequência de Aminoácidos , Citoplasma/química , Citoplasma/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Manitol/química , Manitol/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Conformação Proteica , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Triptofano/metabolismo
4.
Biochim Biophys Acta ; 1788(2): 581-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19013424

RESUMO

This paper presents domain complementation studies in the mannitol transporter, EIImtl, from Escherichia coli. EIImtl is responsible for the transport and concomitant phosphorylation of mannitol over the cytoplasmic membrane. By using tryptophan-less EIImtl as a basis, each of the four phenylalanines located in the cytoplasmic loop between putative transmembrane helices II and III in the membrane-embedded C domain were replaced by tryptophan, yielding the mutants W97, W114, W126, and W133. Except for W97, these single-tryptophan mutants exhibited a high, wild-type-like, binding affinity for mannitol. Of the four mutants, only W114 showed a high mannitol phosphorylation activity. EIImtl is functional as a dimer and the effect of these mutations on the oligomeric activity was investigated via heterodimer formation (C/C domain complementation studies). The low phosphorylation activities of W126 and W133 could be increased 7-28 fold by forming heterodimers with either the C domain of W97 (IICmtlW97) or the inactive EIImtl mutant G196D. W126 and W133, on the other hand, did not complement each other. This study points towards a role of positions 97, 126 and 133 in the oligomeric activation of EIImtl. The involvement of specific residue positions in the oligomeric functioning of a sugar-translocating EII protein has not been presented before.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Sequência de Aminoácidos , Ativação Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Manitol/metabolismo , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/genética , Mutação/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Fosforilação , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
J Biol Chem ; 280(42): 35148-56, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16093245

RESUMO

Membrane-bound transport proteins are expected to proceed via different conformational states during the translocation of a solute across the membrane. Tryptophan phosphorescence spectroscopy is one of the most sensitive methods used for detecting conformational changes in proteins. We employed this technique to study substrate-induced conformational changes in the mannitol permease, EnzymeII(mtl), of the phosphoenolpyruvate-dependent phosphotransferase system from Escherichia coli. Ten mutants containing a single tryptophan were engineered in the membrane-embedded IIC(mtl)-domain, harboring the mannitol translocation pathway. The mutants were characterized with respect to steady-state and time-resolved phosphorescence, yielding detailed, site-specific information of the Trp microenvironment and protein conformational homogeneity. The study revealed that the Trp environments vary from apolar, unstructured, and flexible sites to buried, highly homogeneous, rigid peptide cores. The most remarkable example of the latter was observed for position 97, because its long sub-second phosphorescence lifetime and highly structured spectra in both glassy and fluid media imply a well defined and rigid core around the probe that is typical of beta-sheet-rich structural motifs. The addition of mannitol had a large impact on most of the Trp positions studied. In the case of position 97, mannitol binding induced partial unfolding of the rigid protein core. On the contrary, for residue positions 126, 133, and 147, both steady-state and time-resolved data showed that mannitol binding induces a more ordered and homogeneous structure around these residues. The observations are discussed in context of the current mechanistic and structural model of EII(mtl).


Assuntos
Escherichia coli/enzimologia , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Espectrofotometria/métodos , Triptofano/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Membrana Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli , Bicamadas Lipídicas/química , Manitol/química , Proteínas de Membrana/química , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos , Mutação , Peptídeos/química , Fósforo/química , Fosforilação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Especificidade por Substrato , Temperatura , Fatores de Tempo
6.
Biophys J ; 86(4): 1959-68, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15041640

RESUMO

Flow dialysis has found widespread use in determining the dissociation constant (KD) of a protein-ligand interaction or the amount of available binding sites (E0). This method has the potency to measure both these parameters in a single experiment and in this article a method to measure simultaneously the KD and E0 is presented, together with an extensive error analysis of the method. The flow-dialysis technique is experimentally simple to perform. However, a number of practical aspects of this method can have a large impact on the outcome of KD and E0. We have investigated all sources of significant systematic and random errors, using the interaction between mannitol and its transporter from Escherichia coli as a model. Monte Carlo simulations were found to be an excellent tool to assess the impact of these errors on the binding parameters and to define the experimental conditions that allow their most accurate estimation.


Assuntos
Simulação por Computador , Ligantes , Microdiálise/métodos , Método de Monte Carlo , Proteínas/química , Ligação Proteica , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA