Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glia ; 70(9): 1699-1719, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35579329

RESUMO

Preterm infants often show pathologies of the cerebellum, which are associated with impaired motor performance, lower IQ and poor language skills at school ages. Using a mouse model of inflammation-induced encephalopathy of prematurity driven by systemic administration of pro-inflammatory IL-1ß, we sought to uncover causes of cerebellar damage. In this model, IL-1ß is administered between postnatal day (P) 1 to day 5, a timing equivalent to the last trimester for brain development in humans. Structural MRI analysis revealed that systemic IL-1ß treatment induced specific reductions in gray and white matter volumes of the mouse cerebellar lobules I and II (5% false discovery rate [FDR]) from P15 onwards. Preceding these MRI-detectable cerebellar volume changes, we observed damage to oligodendroglia, with reduced proliferation of OLIG2+ cells at P10 and reduced levels of the myelin proteins myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) at P10 and P15. Increased density of IBA1+ cerebellar microglia were observed both at P5 and P45, with evidence for increased microglial proliferation at P5 and P10. Comparison of the transcriptome of microglia isolated from P5 cerebellums and cerebrums revealed significant enrichment of pro-inflammatory markers in microglia from both regions, but cerebellar microglia displayed a unique type I interferon signaling dysregulation. Collectively, these data suggest that perinatal inflammation driven by systemic IL-1ß leads to specific cerebellar volume deficits, which likely reflect oligodendrocyte pathology downstream of microglial activation. Further studies are now required to confirm the potential of protective strategies aimed at preventing sustained type I interferon signaling driven by cerebellar microglia as an important therapeutic target.


Assuntos
Doenças Cerebelares , Doenças do Prematuro , Inflamação , Interferon Tipo I , Interleucina-1beta , Microglia , Animais , Encefalopatias/induzido quimicamente , Encefalopatias/imunologia , Encefalopatias/patologia , Doenças Cerebelares/induzido quimicamente , Doenças Cerebelares/imunologia , Doenças Cerebelares/patologia , Cerebelo/efeitos dos fármacos , Cerebelo/imunologia , Cerebelo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/induzido quimicamente , Doenças do Prematuro/imunologia , Doenças do Prematuro/patologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/patologia , Interferon Tipo I/imunologia , Interleucina-1beta/efeitos adversos , Interleucina-1beta/farmacologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Gravidez
2.
Mol Psychiatry ; 27(7): 3047-3055, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35422470

RESUMO

Extensive evidence supports the role of the immune system in modulating brain function and behaviour. However, past studies have revealed striking heterogeneity in behavioural phenotypes produced from immune system dysfunction. Using magnetic resonance imaging, we studied the neuroanatomical differences among 11 distinct genetically modified mouse lines (n = 371), each deficient in a different element of the immune system. We found a significant and heterogeneous effect of immune dysfunction on the brains of both male and female mice. However, by imaging the whole brain and using Bayesian hierarchical modelling, we were able to identify patterns within the heterogeneous phenotype. Certain structures-such as the corpus callosum, midbrain, and thalamus-were more likely to be affected by immune dysfunction. A notable brain-behaviour relationship was identified with neuroanatomy endophenotypes across mouse models clustering according to anxiety-like behaviour phenotypes reported in literature, such as altered volume in brains regions associated with promoting fear response (e.g., the lateral septum and cerebellum). Interestingly, genes with preferential spatial expression in the most commonly affected regions are also associated with multiple sclerosis and other immune-mediated diseases. In total, our data suggest that the immune system modulates anxiety behaviour through well-established brain networks.


Assuntos
Encéfalo , Neuroanatomia , Animais , Ansiedade , Teorema de Bayes , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética , Masculino , Camundongos , Fenótipo
3.
Neuroimage ; 179: 357-372, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29782994

RESUMO

An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance.


Assuntos
Encéfalo/anatomia & histologia , Rede Nervosa/anatomia & histologia , Transcriptoma/fisiologia , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/fisiologia
4.
Neuroimage ; 173: 411-420, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29505831

RESUMO

Manganese-enhanced magnetic resonance imaging (MEMRI) is a widely used technique in rodent neuroimaging studies. Traditionally, Mn2+ is delivered to animals via a systemic injection; however, this can lead to toxic effects at high doses. Recent studies have shown that subcutaneously implanted mini-osmotic pumps can be used to continuously deliver manganese chloride (MnCl2), and that they produce satisfactory contrast while circumventing many of the toxic side effects. However, neither the time-course of signal enhancement nor the effect of continuous Mn2+ delivery on behaviour, particularly learning and memory, have been well-characterized. Here, we investigated the effect of MnCl2 dose and route of administration on a) spatial learning in the Morris Water Maze and b) tissue signal enhancement in the mouse brain. Even as early as 3 days after pump implantation, infusion of 25-50 mg/kg/day MnCl2 via osmotic pump produced signal enhancement as good as or better than that achieved 24 h after a single 50 mg/kg intraperitoneal injection. Neither route of delivery nor MnCl2 dose adversely affected spatial learning and memory on the water maze. However, especially at higher doses, mice receiving MnCl2 via osmotic pumps developed skin ulceration which limited the imaging window. With these findings, we provide recommendations for route and dose of MnCl2 to use for different study designs.


Assuntos
Encéfalo/efeitos dos fármacos , Cloretos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/administração & dosagem , Aprendizagem em Labirinto/efeitos dos fármacos , Úlcera Cutânea/induzido quimicamente , Animais , Cloretos/toxicidade , Aumento da Imagem/métodos , Bombas de Infusão Implantáveis , Masculino , Camundongos
5.
Neuroimage ; 173: 551-563, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501873

RESUMO

Biological sex influences brain anatomy across many species. Sex differences in brain anatomy have classically been attributed to differences in sex chromosome complement (XX versus XY) and/or in levels of gonadal sex steroids released from ovaries and testes. Using the four core genotype (4CG) mouse model in which gonadal sex and sex chromosome complement are decoupled, we previously found that sex hormones and chromosomes influence the volume of distinct brain regions. However, recent studies suggest there may be more complex interactions between hormones and chromosomes, and that circulating steroids can compensate for and/or mask underlying chromosomal effects. Moreover, the impact of pre vs post-pubertal sex hormone exposure on this sex hormone/sex chromosome interplay is not well understood. Thus, we used whole brain high-resolution ex-vivo MRI of intact and pre-pubertally gonadectomized 4CG mice to investigate two questions: 1) Do circulating steroids mask sex differences in brain anatomy driven by sex chromosome complement? And 2) What is the contribution of pre- versus post-pubertal hormones to sex-hormone-dependent differences in brain anatomy? We found evidence of both cooperative and compensatory interactions between sex chromosomes and sex hormones in several brain regions, but the interaction effects were of low magnitude. Additionally, most brain regions affected by sex hormones were sensitive to both pre- and post-pubertal hormones. This data provides further insight into the biological origins of sex differences in brain anatomy.


Assuntos
Encéfalo/anatomia & histologia , Hormônios Esteroides Gonadais , Caracteres Sexuais , Cromossomo X , Cromossomo Y , Animais , Feminino , Genótipo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Mutantes
6.
Nat Commun ; 9(1): 298, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352183

RESUMO

Early life experience influences stress reactivity and mental health through effects on cognitive-emotional functions that are, in part, linked to gene expression in the dorsal and ventral hippocampus. The hippocampal dentate gyrus (DG) is a major site for experience-dependent plasticity associated with sustained transcriptional alterations, potentially mediated by epigenetic modifications. Here, we report comprehensive DNA methylome, hydroxymethylome and transcriptome data sets from mouse dorsal and ventral DG. We find genome-wide transcriptional and methylation differences between dorsal and ventral DG, including at key developmental transcriptional factors. Peripubertal environmental enrichment increases hippocampal volume and enhances dorsal DG-specific differences in gene expression. Enrichment also enhances dorsal-ventral differences in DNA methylation, including at binding sites of the transcription factor NeuroD1, a regulator of adult neurogenesis. These results indicate a dorsal-ventral asymmetry in transcription and methylation that parallels well-known functional and anatomical differences, and that may be enhanced by environmental enrichment.


Assuntos
Condicionamento Psicológico/fisiologia , Giro Denteado/metabolismo , Epigênese Genética , Interação Gene-Ambiente , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Transcriptoma , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , DNA/genética , DNA/metabolismo , Metilação de DNA , Giro Denteado/anatomia & histologia , Giro Denteado/diagnóstico por imagem , Giro Denteado/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Ligação Proteica
7.
Brain Struct Funct ; 221(2): 997-1016, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25445841

RESUMO

Males and females exhibit several differences in brain structure and function. To examine the basis for these sex differences, we investigated the influences of sex hormones and sex chromosomes on brain structure and function in mice. We used the Four Core Genotype (4CG) mice, which can generate both male and female mice with XX or XY sex chromosome complement, allowing the decoupling of sex chromosomes from hormonal milieu. To examine whole brain structure, high-resolution ex vivo MRI was performed, and to assess differences in cognitive function, mice were trained on a radial arm maze. Voxel-wise and volumetric analyses of MRI data uncovered a striking independence of hormonal versus chromosomal influences in 30 sexually dimorphic brain regions. For example, the bed nucleus of the stria terminalis and the parieto-temporal lobe of the cerebral cortex displayed steroid-dependence while the cerebellar cortex, corpus callosum, and olfactory bulbs were influenced by sex chromosomes. Spatial learning and memory demonstrated strict hormone-dependency with no apparent influence of sex chromosomes. Understanding the influences of chromosomes and hormones on brain structure and function is important for understanding sex differences in brain structure and function, an endeavor that has eventual implications for understanding sex biases observed in the prevalence of psychiatric disorders.


Assuntos
Encéfalo/fisiologia , Cromossomos Sexuais/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Hormônios Esteroides Gonadais/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Caracteres Sexuais , Fatores Sexuais , Navegação Espacial
8.
Brain Struct Funct ; 220(4): 2043-57, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24760545

RESUMO

The ability to visualize behaviourally evoked neural activity patterns across the rodent brain is essential for understanding the distributed brain networks mediating particular behaviours. However, current imaging methods are limited in their spatial resolution and/or ability to obtain brain-wide coverage of functional activity. Here, we describe a new automated method for obtaining cellular-level, whole-brain maps of behaviourally induced neural activity in the mouse. This method combines the use of transgenic immediate-early gene reporter mice to visualize neural activity; serial two-photon tomography to image the entire brain at cellular resolution; advanced image processing algorithms to count the activated neurons and align the datasets to the Allen Mouse Brain Atlas; and statistical analysis to identify the network of activated brain regions evoked by behaviour. We demonstrate the use of this approach to determine the whole-brain networks activated during the retrieval of fear memories. Consistent with previous studies, we identified a large network of amygdalar, hippocampal, and neocortical brain regions implicated in fear memory retrieval. Our proposed methods can thus be used to map cellular networks involved in the expression of normal behaviours as well as to investigate in depth circuit dysfunction in mouse models of neurobiological disease.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Neurônios/fisiologia , Complexo Relacionado com a AIDS/genética , Complexo Relacionado com a AIDS/metabolismo , Animais , Benzofuranos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Quinolinas , Estatísticas não Paramétricas
9.
Neuroimage ; 83: 593-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23831531

RESUMO

Recent human and rodent brain imaging studies have shown that the shape of the brain can be changed by experience. These mesoscopic alterations in neuroanatomy are hypothesized to be driven by changes at the level of neuronal processes. To examine whether the shape of the brain changes rapidly, we used MRI to examine changes in the volume of the hippocampus across the 4-6 day estrous cycle in the female mouse. It is well known that changing steroid levels across the cycle influence dendritic spine maturation and alter synapse density in the hippocampus; our results show that the estrous cycle is associated with approximately 2-3% changes in hippocampal volume as seen by high-resolution ex-vivo MRI. Changes in hippocampal volume are, moreover, associated with a switch between hippocampal and striatal based navigation strategies in solving the dual choice T-maze in the same mice. A second experiment, using in-vivo MRI, suggests that these changes in hippocampal volume can occur over a 24 hour period. In summary, we show that the brain is highly plastic at a mesoscopic level of resolution detectable by MRI, that volumetric increases and decreases in hippocampal volume follow previously established patterns of changes in neuropil, and that these changes in volume predict changes in cognition.


Assuntos
Ciclo Estral/fisiologia , Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Cognição , Feminino , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA