RESUMO
BACKGROUND: Intrinsic or environmental stresses trigger the accumulation of improperly folded proteins in the endoplasmic reticulum (ER), leading to ER stress. To cope with this, cells have evolved an adaptive mechanism named the unfolded protein response (UPR) which is hijacked by tumor cells to develop malignant features. Glioblastoma (GB), the most aggressive and lethal primary brain tumor, relies on UPR to sustain growth. We recently showed that IRE1 alpha (referred to IRE1 hereafter), 1 of the UPR transducers, promotes GB invasion, angiogenesis, and infiltration by macrophage. Hence, high tumor IRE1 activity in tumor cells predicts a worse outcome. Herein, we characterized the IRE1-dependent signaling that shapes the immune microenvironment toward monocytes/macrophages and neutrophils. METHODS: We used human and mouse cellular models in which IRE1 was genetically or pharmacologically invalidated and which were tested in vivo. Publicly available datasets from GB patients were also analyzed to confirm our findings. RESULTS: We showed that IRE1 signaling, through both the transcription factor XBP1s and the regulated IRE1-dependent decay controls the expression of the ubiquitin-conjugating E2 enzyme UBE2D3. In turn, UBE2D3 activates the NFκB pathway, resulting in chemokine production and myeloid infiltration in tumors. CONCLUSIONS: Our work identifies a novel IRE1/UBE2D3 proinflammatory axis that plays an instrumental role in GB immune regulation.
Assuntos
Neoplasias Encefálicas , Endorribonucleases , Glioblastoma , Células Mieloides , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Camundongos , Endorribonucleases/metabolismo , Endorribonucleases/genética , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Células Mieloides/metabolismo , Células Mieloides/patologia , Resposta a Proteínas não Dobradas , Microambiente Tumoral , Células Tumorais Cultivadas , Estresse do Retículo EndoplasmáticoRESUMO
Cutaneous melanoma (CM) is the most aggressive type of skin cancer, and it is characterised by high mutational load and heterogeneity. In this study, we aimed to analyse the genomic and transcriptomic profile of primary melanomas from forty-six Formalin-Fixed, Paraffin-Embedded (FFPE) tissues from Greek patients. Molecular analysis for both germline and somatic variations was performed in genomic DNA from peripheral blood and melanoma samples, respectively, exploiting whole exome and targeted sequencing, and transcriptomic analysis. Detailed clinicopathological data were also included in our analyses and previously reported associations with specific mutations were recognised. Most analysed samples (43/46) were found to harbour at least one clinically actionable somatic variant. A subset of samples was profiled at the transcriptomic level, and it was shown that specific melanoma phenotypic states could be inferred from bulk RNA isolated from FFPE primary melanoma tissue. Integrative bioinformatics analyses, including variant prioritisation, differential gene expression analysis, and functional and gene set enrichment analysis by group and per sample, were conducted and molecular circuits that are implicated in melanoma cell programmes were highlighted. Integration of mutational and transcriptomic data in CM characterisation could shed light on genes and pathways that support the maintenance of phenotypic states encrypted into heterogeneous primary tumours.
RESUMO
The deregulated DNA damage response (DDR) network is associated with the onset and progression of cancer. Herein, we searched for DDR defects in peripheral blood mononuclear cells (PBMCs) from lung cancer patients, and we evaluated factors leading to the augmented formation of DNA damage and/or its delayed/decreased removal. In PBMCs from 20 lung cancer patients at diagnosis and 20 healthy controls (HC), we analyzed oxidative stress and DDR-related parameters, including critical DNA repair mechanisms and apoptosis rates. Cancer patients showed higher levels of endogenous DNA damage than HC (p < 0.001), indicating accumulation of DNA damage in the absence of known exogenous genotoxic insults. Higher levels of oxidative stress and apurinic/apyrimidinic sites were observed in patients rather than HC (all p < 0.001), suggesting that increased endogenous DNA damage may emerge, at least in part, from these intracellular factors. Lower nucleotide excision repair and double-strand break repair capacities were found in patients rather than HC (all p < 0.001), suggesting that the accumulation of DNA damage can also be mediated by defective DNA repair mechanisms. Interestingly, reduced apoptosis rates were obtained in cancer patients compared with HC (p < 0.001). Consequently, the expression of critical DDR-associated genes was found deregulated in cancer patients. Together, oxidative stress and DDR-related aberrations contribute to the accumulation of endogenous DNA damage in PBMCs from lung cancer patients and can potentially be exploited as novel therapeutic targets and non-invasive biomarkers.
RESUMO
Ageing is a biological process guided by genetic and environmental factors that ultimately lead to adverse outcomes for organismal lifespan and healthspan. Determination of molecular pathways that are affected with age and increase disease susceptibility is crucial. The gene expression profile of the ideal ageing model, namely the nematode Caenorhabditis elegans mapped with the microarray technology initially led to the identification of age-dependent gene expression alterations that characterize the nematode's ageing process. The list of differentially expressed genes was then utilized to construct a network of molecular interactions with their first neighbors/interactors using the interactions listed in the WormBase database. The subsequent network analysis resulted in the unbiased selection of 110 candidate genes, among which well-known ageing regulators appeared. More importantly, our approach revealed candidates that have never been linked to ageing before, thus suggesting promising potential targets/ageing regulators.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envelhecimento/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Genes Reguladores , Longevidade/genéticaRESUMO
Glioblastoma multiforme (GBM) is the most severe primary brain cancer. Despite an aggressive treatment comprising surgical resection and radio/chemotherapy, patient's survival post diagnosis remains short. A limitation for success in finding novel improved therapeutic options for such dismal disease partly lies in the lack of a relevant animal model that accurately recapitulates patient disease and standard of care. In the present study, we have developed an immunocompetent GBM model that includes tumor surgery and a radio/chemotherapy regimen resembling the Stupp protocol and we have used this model to test the impact of the pharmacological inhibition of the endoplasmic reticulum (ER) stress sensor IRE1, on treatment efficacy.
Assuntos
Benzopiranos/administração & dosagem , Neoplasias Encefálicas/terapia , Terapia Combinada/métodos , Glioblastoma/terapia , Morfolinas/administração & dosagem , Animais , Benzopiranos/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Craniotomia , Tratamento Farmacológico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/imunologia , Humanos , Imunocompetência , Injeções Intralesionais , Camundongos , Morfolinas/farmacologia , Terapia Neoadjuvante , Radioterapia , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Mutations in CALR observed in myeloproliferative neoplasms (MPN) were recently shown to be pathogenic via their interaction with MPL and the subsequent activation of the Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) pathway. However, little is known on the impact of those variant CALR proteins on endoplasmic reticulum (ER) homeostasis. METHODS: The impact of the expression of Wild Type (WT) or mutant CALR on ER homeostasis was assessed by quantifying the expression level of Unfolded Protein Response (UPR) target genes, splicing of X-box Binding Protein 1 (XBP1), and the expression level of endogenous lectins. Pharmacological and molecular (siRNA) screens were used to identify mechanisms involved in CALR mutant proteins degradation. Coimmunoprecipitations were performed to define more precisely actors involved in CALR proteins disposal. RESULTS: We showed that the expression of CALR mutants alters neither ER homeostasis nor the sensitivity of hematopoietic cells towards ER stress-induced apoptosis. In contrast, the expression of CALR variants is generally low because of a combination of secretion and protein degradation mechanisms mostly mediated through the ER-Associated Degradation (ERAD)-proteasome pathway. Moreover, we identified a specific ERAD network involved in the degradation of CALR variants. CONCLUSIONS: We propose that this ERAD network could be considered as a potential therapeutic target for selectively inhibiting CALR mutant-dependent proliferation associated with MPN, and therefore attenuate the associated pathogenic outcomes.
RESUMO
CD90 is a membrane GPI-anchored protein with one Ig V-type superfamily domain that was initially described in mouse T cells. Besides the specific expression pattern and functions of CD90 that were described in normal tissues, i.e., neurons, fibroblasts and T cells, increasing evidences are currently highlighting the possible involvement of CD90 in cancer. This review first provides a brief overview on CD90 gene, mRNA and protein features and then describes the established links between CD90 and cancer. Finally, we report newly uncovered functional connections between CD90 and endoplasmic reticulum (ER) stress signaling and discuss their potential impact on cancer development.
RESUMO
The restoration of left ventricular (LV) geometry in combination with coronary artery bypass grafting for the treatment of ischemic cardiac disease remains controversial. We hereby present the experience of our center with total arterial myocardial revascularization (TAMR) and spiral aneurysmorrhaphy for ischemic heart disease. A retrospective analysis of 101 patients with advanced cardiovascular disease who underwent TAMR and spiral aneurysmorrhaphy was performed. Spiral aneurysmorrhaphy is a modification of the linear aneurysmorrhaphy and was applied to patients who had a LV aneurysm with a diameter of less than 5 cm. Peri-operative and in-hospital data were retrieved. The majority of the patients were male (87.13%) with a mean age of 63.1 years. Mean pre-operative ejection fraction (EF) was 35.7% ranging between 20 and 65%. An average of 3.23 grafts was required per patient. Early mortality was 6.93% (one intra-operative and six in-hospital deaths). Addition of concomitant valve surgery was associated with prolonged total operative, cardiopulmonary bypass and cross-clamp time (p < 0.001), increased need for blood (p = 0.012) and plasma (p = 0.038), longer intensive care unit (ICU) stay (p = 0.045) and higher rate of post-operative cerebrovascular accident (p = 0.011). Furthermore, patients with a pre-operative EF between 30 and 50% had a shorter ICU stay (p = 0.045) and LoS (p = 0.029) compared with patients with EF <30%. Early mortality and post-operative complication rates following this combined procedure are in consistency with the relevant available data suggesting its feasibility regardless of the EF or addition of concomitant surgeries. Data from the follow-up of these patients are required to examine the long-term efficacy of this surgical modality.
Assuntos
Isquemia Miocárdica/cirurgia , Revascularização Miocárdica/métodos , Procedimentos Cirúrgicos Vasculares/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/mortalidade , Estudos Retrospectivos , Resultado do TratamentoRESUMO
The unfolded protein response (UPR) is an adaptive signaling pathway activated in response to endoplasmic reticulum (ER) stress. The effectors of the UPR are potent transcription activators; however, some genes are suppressed by ER stress at the mRNA level. The mechanisms underlying UPR-mediated gene suppression are less known. Exploration of the effect of UPR on NK cells ligand expression found that the transcription of NK group 2 member D (NKG2D) ligand major histocompatibility complex class I polypeptide-related sequence A/B (MICA/B) is suppressed by the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) pathway of the UPR. Deletion of IRE1 or XBP1 was sufficient to promote mRNA and surface levels of MICA. Accordingly, NKG2D played a greater role in the killing of IRE1/XBP1 knockout target cells. Analysis of effectors downstream to XBP1s identified E2F transcription factor 1 (E2F1) as linking UPR and MICA transcription. The inverse correlation between XBP1 and E2F1 or MICA expression was corroborated in RNA-Seq analysis of 470 primary melanoma tumors. While mechanisms that connect XBP1 to E2F1 are not fully understood, we implicate a few microRNA molecules that are modulated by ER stress and possess dual suppression of E2F1 and MICA. Because of the importance of E2F1 and MICA in cancer progression and recognition, these observations could be exploited for cancer therapy by manipulating the UPR in tumor cells.-Obiedat, A., Seidel, E., Mahameed, M., Berhani, O., Tsukerman, P., Voutetakis, K., Chatziioannou, A., McMahon, M., Avril, T., Chevet, E., Mandelboim, O., Tirosh, B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1.
Assuntos
Fator de Transcrição E2F1/genética , Endorribonucleases/genética , Antígenos de Histocompatibilidade Classe I/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Proteínas Serina-Treonina Quinases/genética , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Humanos , Ligantes , RNA Mensageiro/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcrição Gênica/genéticaRESUMO
Aging is a multifactorial process characterized by the accumulation of proteins undergoing oxidative modifications, either due to enhanced levels of oxidative stress or due to their decreased clearance; both facts are related to the establishment of chronic inflammatory processes. These processes are directly associated with functional and structural modifications of a key cellular component, namely the proteasome. In this study, levels of oxidized proteins, along with proteasome and immunoproteasome composition and activity on a selected group of 120 elderly volunteers were analyzed before and after the administration of a specific dietary protocol, based on an elderly tailored Mediterranean diet (the "NU-AGE diet"). A significant negative correlation between levels of oxidized/carbonylated proteins and proteasome function was confirmed, both before and after intervention. Furthermore, it was demonstrated that subgroups of non-frail subjects and women receive a greater benefit after the intervention, concerning specifically the proteasome content and activity. These data highlight the putative beneficial effects of Mediterranean diet on the major cellular proteolytic mechanism, the proteasome, in elderly people.
RESUMO
Dietary restriction (DR) was shown to impact on tumor growth with very variable effects depending on the cancer type. However, how DR limits cancer progression remains largely unknown. Here, we demonstrate that feeding mice a low-protein (Low PROT) isocaloric diet but not a low-carbohydrate (Low CHO) diet reduced tumor growth in three independent mouse cancer models. Surprisingly, this effect relies on anticancer immunosurveillance, as depleting CD8+ T cells, antigen-presenting cells (APCs), or using immunodeficient mice prevented the beneficial effect of the diet. Mechanistically, we established that a Low PROT diet induces the unfolded protein response (UPR) in tumor cells through the activation of IRE1α and RIG1 signaling, thereby resulting in cytokine production and mounting an efficient anticancer immune response. Collectively, our data suggest that a Low PROT diet induces an IRE1α-dependent UPR in cancer cells, enhancing a CD8-mediated T cell response against tumors.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Dieta com Restrição de Proteínas , Endorribonucleases/metabolismo , Vigilância Imunológica , Neoplasias Experimentais/dietoterapia , Neoplasias Experimentais/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Neoplasias Colorretais/dietoterapia , Neoplasias Colorretais/imunologia , Endorribonucleases/genética , Feminino , Depleção Linfocítica , Linfoma/dietoterapia , Linfoma/imunologia , Melanoma Experimental/dietoterapia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , RNA Helicases/metabolismo , Transdução de SinaisRESUMO
Proteostasis imbalance is emerging as a major hallmark of cancer, driving tumor aggressiveness. Evidence suggests that the endoplasmic reticulum (ER), a major site for protein folding and quality control, plays a critical role in cancer development. This concept is valid in glioblastoma multiform (GBM), the most lethal primary brain cancer with no effective treatment. We previously demonstrated that the ER stress sensor IRE1α (referred to as IRE1) contributes to GBM progression, through XBP1 mRNA splicing and regulated IRE1-dependent decay (RIDD) of RNA Here, we first demonstrated IRE1 signaling significance to human GBM and defined specific IRE1-dependent gene expression signatures that were confronted to human GBM transcriptomes. This approach allowed us to demonstrate the antagonistic roles of XBP1 mRNA splicing and RIDD on tumor outcomes, mainly through selective remodeling of the tumor stroma. This study provides the first demonstration of a dual role of IRE1 downstream signaling in cancer and opens a new therapeutic window to abrogate tumor progression.
Assuntos
Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Carcinogênese/patologia , Endorribonucleases/metabolismo , Glioblastoma/enzimologia , Glioblastoma/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Encefálicas/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Endorribonucleases/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Modelos Biológicos , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Microambiente Tumoral/genéticaRESUMO
Due to the successful implementation of vaccination strategies early-life morbidity and mortality due to infectious disease has been reduced dramatically. Vaccines against tetanus and diphtheria are among the most frequently used vaccines worldwide, but various studies in different European countries have shown that protection against tetanus and particularly against diphtheria is unsatisfactory in adults and older persons. In this study we analyzed tetanus- and diphtheria-specific antibody concentrations in 2100 adults of different age from 6 selected European countries (Austria, Belgium, Germany, Greece, Italy, Poland) in order to investigate differences in the level of protection against tetanus and diphtheria across Europe. Our data reveal that tetanus- and diphtheria-specific antibody concentrations vary greatly between countries, which is also reflected in the percentage of persons with antibody concentrations below the protective level (0.1IU/ml), which ranged from 2 to 31% percent for tetanus and 28-63% for diphtheria. In most countries, tetanus- and diphtheria-specific antibody concentrations decrease with age. This phenomenon is more pronounced in countries with generally low antibody levels, such as Italy, Poland and Greece. Interestingly, tetanus-specific antibody concentrations are generally higher in males than in females, which is probably due to vaccination during their military service or more frequent booster vaccinations after injuries, whereas no gender-related differences were found for diphtheria-specific antibodies. In conclusion, our study demonstrates that the European population is not fully protected against tetanus and diphtheria. Measures to improve protection should include a life-long perspective on vaccination, more education to increase awareness of and compliance with vaccination guidelines, and a harmonization of recommendations and incentives across Europe.
Assuntos
Fatores Etários , Anticorpos Antibacterianos/sangue , Difteria/prevenção & controle , Tétano/prevenção & controle , Adulto , Idoso , Difteria/sangue , Europa (Continente) , Feminino , Humanos , Imunização Secundária/métodos , Masculino , Pessoa de Meia-Idade , Tétano/sangue , VacinaçãoRESUMO
We have determined the putative anti-ageing properties of Khelma Longevity™, a formula based on various natural compounds from the Mediterranean area. Human primary fibroblast cultures were treated with a wide range of concentrations of Khelma Longevity™ for 1 day or 3 consecutive days. Following these treatments, two major and complementary biomarkers of ageing were measured, namely, the proteasome and the amount of oxidized proteins. It was observed that 24h of treatment with Khelma Longevity™ resulted in a maximum increase of about 41% of the total protein levels of 20S proteasome. Levels of oxidized proteins were reduced by almost 6.5-fold following longer treatments. Specifically we have observed a maximum decrease of protein carbonyls to 84.7% in comparison with nontreated control cells following 3 days of continuous treatment with Khelma Longevity™. These results support the notion that formulas rich in natural compounds from the Mediterranean area possess anti-ageing properties.
Assuntos
Produtos Biológicos/farmacologia , Senescência Celular/efeitos dos fármacos , Fibroblastos/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Oxirredução , Carbonilação Proteica/efeitos dos fármacosRESUMO
Several studies have employed DNA microarrays to identify gene expression signatures that mark human ageing; yet the features underlying this complicated phenomenon remain elusive. We thus conducted a bioinformatics meta-analysis on transcriptomics data from human cell- and biopsy-based microarrays experiments studying cellular senescence or in vivo tissue ageing, respectively. We report that coregulated genes in the postmitotic muscle and nervous tissues are classified into pathways involved in cancer, focal adhesion, actin cytoskeleton, MAPK signalling, and metabolism regulation. Genes that are differentially regulated during cellular senescence refer to pathways involved in neurodegeneration, focal adhesion, actin cytoskeleton, proteasome, cell cycle, DNA replication, and oxidative phosphorylation. Finally, we revealed genes and pathways (referring to cancer, Huntington's disease, MAPK signalling, focal adhesion, actin cytoskeleton, oxidative phosphorylation, and metabolic signalling) that are coregulated during cellular senescence and in vivo tissue ageing. The molecular commonalities between cellular senescence and tissue ageing are also highlighted by the fact that pathways that were overrepresented exclusively in the biopsy- or cell-based datasets are modules either of the same reference pathway (e.g., metabolism) or of closely interrelated pathways (e.g., thyroid cancer and melanoma). Our reported meta-analysis has revealed novel age-related genes, setting thus the basis for more detailed future functional studies.
Assuntos
Envelhecimento , Senescência Celular , Biologia Computacional/métodos , Transcriptoma , Linhagem Celular , Replicação do DNA , Bases de Dados Factuais , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Sistema Nervoso/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de SinaisRESUMO
Changes in the abundance and post-translational modification of proteins and accumulation of some covalently modified proteins have been proposed to represent hallmarks of biological ageing. Within the frame of the Mark-Age project, the workpackage dedicated to "markers based on proteins and their modifications" has been firstly focused on enzymatic and non-enzymatic post-translational modifications of serum proteins by carbohydrates. The second focus of the workpackage has been directed towards protein maintenance systems that are involved either in protein quality control (ApoJ/Clusterin) or in the removal of oxidatively damaged proteins through degradation and repair (proteasome and methionine sulfoxide reductase systems). This review describes the most relevant features of these protein modifications and maintenance systems, their fate during ageing and/or their implication in ageing and longevity.
Assuntos
Longevidade/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Animais , Biomarcadores/metabolismo , Humanos , OxirreduçãoRESUMO
Aging is a natural process accompanied by a progressive accumulation of damage in all constituent macromolecules (nucleic acids, lipids and proteins). Accumulation of damage in proteins leads to failure of proteostasis (or vice versa) due to increased levels of unfolded, misfolded or aggregated proteins and, in turn, to aging and/or age-related diseases. The major cellular proteolytic machineries, namely the proteasome and the lysosome, have been shown to dysfunction during aging and age-related diseases. Regarding the proteasome, it is well established that it can be activated either through genetic manipulation or through treatment with natural or chemical compounds that eventually result to extension of lifespan or deceleration of the progression of age-related diseases. This review article focuses on proteasome activation studies in several species and cellular models and their effects on aging and longevity. Moreover, it summarizes findings regarding proteasome activation in the major age-related diseases as well as in progeroid syndromes.