Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712201

RESUMO

Models of nuclear genome organization often propose a binary division into active versus inactive compartments, yet they overlook nuclear bodies. Here we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Whereas gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

2.
Curr Opin Genet Dev ; 79: 102031, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36905782

RESUMO

Decades of work on the spatiotemporal organization of mammalian DNA replication timing (RT) continues to unveil novel correlations with aspects of transcription and chromatin organization but, until recently, mechanisms regulating RT and the biological significance of the RT program had been indistinct. We now know that the RT program is both influenced by and necessary to maintain chromatin structure, forming an epigenetic positive feedback loop. Moreover, the discovery of specific cis-acting elements regulating mammalian RT at both the domain and the whole-chromosome level has revealed multiple cell-type-specific and developmentally regulated mechanisms of RT control. We review recent evidence for diverse mechanisms employed by different cell types to regulate their RT programs and the biological significance of RT regulation during development.


Assuntos
Cromatina , Período de Replicação do DNA , Animais , Período de Replicação do DNA/genética , Cromatina/genética , Replicação do DNA/genética , Mamíferos/genética
3.
EMBO Rep ; 23(12): e55782, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36245428

RESUMO

Ki-67 is a chromatin-associated protein with a dynamic distribution pattern throughout the cell cycle and is thought to be involved in chromatin organization. The lack of genomic interaction maps has hampered a detailed understanding of its roles, particularly during interphase. By pA-DamID mapping in human cell lines, we find that Ki-67 associates with large genomic domains that overlap mostly with late-replicating regions. Early in interphase, when Ki-67 is present in pre-nucleolar bodies, it interacts with these domains on all chromosomes. However, later in interphase, when Ki-67 is confined to nucleoli, it shows a striking shift toward small chromosomes. Nucleolar perturbations indicate that these cell cycle dynamics correspond to nucleolar maturation during interphase, and suggest that nucleolar sequestration of Ki-67 limits its interactions with larger chromosomes. Furthermore, we demonstrate that Ki-67 does not detectably control chromatin-chromatin interactions during interphase, but it competes with the nuclear lamina for interaction with late-replicating DNA, and it controls replication timing of (peri)centromeric regions. Together, these results reveal a highly dynamic choreography of genome interactions and roles for Ki-67 in heterochromatin organization.


Assuntos
Genômica , Heterocromatina , Humanos , Heterocromatina/genética , Antígeno Ki-67/genética
4.
Nat Commun ; 13(1): 6301, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273230

RESUMO

ASARs are long noncoding RNA genes that control replication timing of entire human chromosomes in cis. The three known ASAR genes are located on human chromosomes 6 and 15, and are essential for chromosome integrity. To identify ASARs on all human chromosomes we utilize a set of distinctive ASAR characteristics that allow for the identification of hundreds of autosomal loci with epigenetically controlled, allele-restricted behavior in expression and replication timing of coding and noncoding genes, and is distinct from genomic imprinting. Disruption of noncoding RNA genes at five of five tested loci result in chromosome-wide delayed replication and chromosomal instability, validating their ASAR activity. In addition to the three known essential cis-acting chromosomal loci, origins, centromeres, and telomeres, we propose that all mammalian chromosomes also contain "Inactivation/Stability Centers" that display allele-restricted epigenetic regulation of protein coding and noncoding ASAR genes that are essential for replication and stability of each chromosome.


Assuntos
RNA Longo não Codificante , Animais , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Epigênese Genética , Período de Replicação do DNA , Cromossomos/metabolismo , RNA não Traduzido , Mamíferos/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-33558366

RESUMO

Immediately following the discovery of the structure of DNA and the semi-conservative replication of the parental DNA sequence into two new DNA strands, it became apparent that DNA replication is organized in a temporal and spatial fashion during the S phase of the cell cycle, correlated with the large-scale organization of chromatin in the nucleus. After many decades of limited progress, technological advances in genomics, genome engineering, and imaging have finally positioned the field to tackle mechanisms underpinning the temporal and spatial regulation of DNA replication and the causal relationships between DNA replication and other features of large-scale chromosome structure and function. In this review, we discuss these major recent discoveries as well as expectations for the coming decade.


Assuntos
Período de Replicação do DNA , Mamíferos/genética , Animais , Empacotamento do DNA , Genoma , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA