Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Public Health ; 11: 1229386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790716

RESUMO

Blockchain technology includes numerous elements such as distributed ledgers, decentralization, authenticity, privacy, and immutability. It has progressed past the hype to find actual use cases in industries like healthcare. Blockchain is an emerging area that relies on a consensus algorithm and the idea of a digitally distributed ledger to eliminate any intermediary risks. By enabling them to trace data provenance and any changes made, blockchain technology can enable different healthcare stakeholders to share access to their networks without violating data security and integrity. The healthcare industry faces challenges like fragmented data, security and privacy concerns, and interoperability issues. Blockchain technology offers potential solutions by ensuring secure, tamper-proof storage across multiple network nodes, improving interoperability and patient privacy. Encrypting patient data further enhances security and reduces unauthorized access concerns. Blockchain technology, deployed over the Internet, can potentially use the current healthcare data by using a patient-centric approach and removing the intermediaries. This paper discusses the effective utilization of blockchain technology in the healthcare industry. In contrast to other applications, the exoteric evaluation in this paper shows that the innovative technology called blockchain technology has a major role to play in the existing and future applications of the healthcare industry and has significant benefits.


Assuntos
Blockchain , Humanos , Registros Eletrônicos de Saúde , Segurança Computacional , Atenção à Saúde , Confidencialidade
2.
Cell Biol Int ; 45(3): 518-527, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32068315

RESUMO

Arginine-deprivation therapy is a rapidly developing metabolic anticancer approach. To overcome the resistance of some cancer cells to this monotherapy, rationally designed combination modalities are needed. In this report, we evaluated for the first time indospicine, an arginine analogue of Indigofera plant genus origin, as potential enhancer compound for the metabolic therapy that utilizes recombinant human arginase I. We demonstrate that indospicine at low micromolar concentrations is selectively toxic for human colorectal cancer cells only in the absence of arginine. In arginine-deprived cancer cells indospicine deregulates some prosurvival pathways (PI3K-Akt and MAPK) and activates mammalian target of rapamycin, exacerbates endoplasmic reticulum stress and triggers caspase-dependent apoptosis, which is reversed by the exposure to translation inhibitors. Simultaneously, indospicine is not degraded by recombinant human arginase I and does not inhibit this arginine-degrading enzyme at its effective dose. The obtained results emphasize the potential of arginine structural analogues as efficient components for combinatorial metabolic targeting of malignant cells.


Assuntos
Apoptose/efeitos dos fármacos , Arginina/deficiência , Neoplasias/patologia , Norleucina/análogos & derivados , Arginase/metabolismo , Arginina/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Norleucina/química , Norleucina/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
3.
Mol Cancer Ther ; 17(2): 393-406, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28830984

RESUMO

Tumor cells-even if nonauxotrophic-are often highly sensitive to arginine deficiency. We hypothesized that arginine deprivation therapy (ADT) if combined with irradiation could be a new treatment strategy for glioblastoma (GBM) patients because systemic ADT is independent of local penetration and diffusion limitations. A proof-of-principle in vitro study was performed with ADT being mimicked by application of recombinant human arginase or arginine-free diets. ADT inhibited two-dimensional (2-D) growth and cell-cycle progression, and reduced growth recovery after completion of treatment in four different GBM cell line models. Cells were less susceptible to ADT alone in the presence of citrulline and in a three-dimensional (3-D) environment. Migration and 3-D invasion were not unfavorably affected. However, ADT caused a significant radiosensitization that was more pronounced in a GBM cell model with p53 loss of function as compared with its p53-wildtype counterpart. The synergistic effect was independent of basic and induced argininosuccinate synthase or argininosuccinate lyase protein expression and not abrogated by the presence of citrulline. The radiosensitizing potential was maintained or even more distinguishable in a 3-D environment as verified in p53-knockdown and p53-wildtype U87-MG cells via a 60-day spheroid control probability assay. Although the underlying mechanism is still ambiguous, the observation of ADT-induced radiosensitization is of great clinical interest, in particular for patients with GBM showing high radioresistance and/or p53 loss of function. Mol Cancer Ther; 17(2); 393-406. ©2017 AACRSee all articles in this MCT Focus section, "Developmental Therapeutics in Radiation Oncology."


Assuntos
Arginina/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Radiossensibilizantes/uso terapêutico , Glioblastoma/patologia , Humanos , Radiossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA