Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Clin Oncol (R Coll Radiol) ; 33(12): 795-803, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34340917

RESUMO

AIMS: The De-ESCALaTE study showed an overall survival advantage for the administration of synchronous cisplatin chemotherapy with radiotherapy in low-risk oropharyngeal cancer when compared with synchronous cetuximab. During the trial, a radiotherapy quality assurance protocol amendment permitted centres to swap from the original radiotherapy contouring protocol (incorporating the whole oropharynx into the high-dose clinical target volume (CTV); anatomical protocol) to a protocol that incorporated the gross tumour volume with a 10 mm margin into the CTV (volumetric protocol). The purpose of this study was to examine both toxicity and tumour control related to this protocol amendment. MATERIALS AND METHODS: Overall survival and recurrence at 2 years were used to compare tumour control in the two contouring cohorts. For toxicity, the cohorts were compared by both the number of severe (grades 3-5) and all grades acute and late toxicities. In addition, quality of life and swallowing were compared using EORTC-C30 and MD Anderson Dysphagia Inventory, respectively. RESULTS: Of 327 patients included in this study, 185 were contoured according to the anatomical protocol and 142 by the volumetric protocol. The two cohorts were well balanced, with the exception of significantly more patients in the anatomical cohort undergoing prophylactic feeding tube insertion (P < 0.001). With a minimum of 2 years of follow-up there was no significant difference in overall survival or recurrence between the two contouring protocols. Similarly, there was no significant difference in the rate of reported severe or all grades acute or late toxicity and no sustained significant difference in quality of life. However, there was a significant difference in favour of volumetric contouring in several domains of the MD Anderson Dysphagia Inventory questionnaire at 1 year, which persisted to 2 years in the dysphagia functional (P = 0.002), dysphagia physical (P = 0.009) and dysphagia overall function (P = 0.008) domains. CONCLUSION: In the context of the unplanned post-hoc analysis of a randomised trial, measurable improvement in long-term dysphagia has been shown following a reduction in the CTV. Further reductions in the CTV should be subject to similar scrutiny within the confines of a prospective study.


Assuntos
Transtornos de Deglutição , Neoplasias Orofaríngeas , Cetuximab , Transtornos de Deglutição/etiologia , Humanos , Neoplasias Orofaríngeas/radioterapia , Estudos Prospectivos , Qualidade de Vida
2.
Clin Oncol (R Coll Radiol) ; 33(12): e613, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34215449
3.
Oral Oncol ; 113: 105112, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33321287

RESUMO

There has been increased interest in hypofractionated accelerated chemoradiation for head and neck cancer during the recent first peak of the COVID-19 pandemic. Prospective data regarding this approach from randomised trials is lacking. In the PET NECK study, 564 patients with squamous cell carcinoma of the head and neck receiving definitive chemoradiation were randomised to either planned neck dissection or PET CT scan guided surveillance. In this surgical trial, three radiotherapy fractionation schedules delivered over 7, 6 or 4 weeks were permitted with synchronous chemotherapy. The purpose of this study was to determine efficacy and quality of life outcomes associated with the use of these schedules. Primary local control and overall survival in addition to quality of life measures at immediately post treatment and 6, 12 and 24 months post-treatment were compared between the three fractionation cohorts. In the 525 patients where fractionation data was available, 181 (34%), 288 (55%) and 56 (11%) patients received 68-70 Gy in 34-35 fractions (#), 60-66 Gy in 30# and 55 Gy in 20# respectively. At a minimum follow up of two years following treatment there was no significant difference between the three fractionation schemes in local control, overall survival or any quality of life measure. Despite the obvious limitations of this study, some data is provided to support the use of hypofractionated accelerated chemoradiation to avoid delays in cancer treatment and reduce hospital visits during the peak of a pandemic. Data from on-going randomised trials examining hypofractionated chemoradiation may be useful for selecting fractionation schedules during future pandemics.


Assuntos
COVID-19/epidemiologia , Carcinoma de Células Escamosas/terapia , Quimiorradioterapia/métodos , Neoplasias de Cabeça e Pescoço/terapia , Pandemias , Hipofracionamento da Dose de Radiação , SARS-CoV-2 , Idoso , COVID-19/virologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Esvaziamento Cervical , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Qualidade de Vida , Resultado do Tratamento
4.
Anaesthesia ; 73(2): 195-204, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29150856

RESUMO

Our aim was to prospectively determine the predictive capabilities of SEPSIS-1 and SEPSIS-3 definitions in the emergency departments and general wards. Patients with National Early Warning Score (NEWS) of 3 or above and suspected or proven infection were enrolled over a 24-h period in 13 Welsh hospitals. The primary outcome measure was mortality within 30 days. Out of the 5422 patients screened, 431 fulfilled inclusion criteria and 380 (88%) were recruited. Using the SEPSIS-1 definition, 212 patients had sepsis. When using the SEPSIS-3 definitions with Sequential Organ Failure Assessment (SOFA) score ≥ 2, there were 272 septic patients, whereas with quickSOFA score ≥ 2, 50 patients were identified. For the prediction of primary outcome, SEPSIS-1 criteria had a sensitivity (95%CI) of 65% (54-75%) and specificity of 47% (41-53%); SEPSIS-3 criteria had a sensitivity of 86% (76-92%) and specificity of 32% (27-38%). SEPSIS-3 and SEPSIS-1 definitions were associated with a hazard ratio (95%CI) 2.7 (1.5-5.6) and 1.6 (1.3-2.5), respectively. Scoring system discrimination evaluated by receiver operating characteristic curves was highest for Sequential Organ Failure Assessment score (0.69 (95%CI 0.63-0.76)), followed by NEWS (0.58 (0.51-0.66)) (p < 0.001). Systemic inflammatory response syndrome criteria (0.55 (0.49-0.61)) and quickSOFA score (0.56 (0.49-0.64)) could not predict outcome. The SEPSIS-3 definition identified patients with the highest risk. Sequential Organ Failure Assessment score and NEWS were better predictors of poor outcome. The Sequential Organ Failure Assessment score appeared to be the best tool for identifying patients with high risk of death and sepsis-induced organ dysfunction.


Assuntos
Escores de Disfunção Orgânica , Sepse , Terminologia como Assunto , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecção Hospitalar/mortalidade , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/mortalidade , Valor Preditivo dos Testes , Prevalência , Prognóstico , Estudos Prospectivos , Curva ROC , Sensibilidade e Especificidade , Sepse/mortalidade , Resultado do Tratamento , Adulto Jovem
5.
Neuroscience ; 179: 56-61, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21277354

RESUMO

Prion protein (PrP) is abundant in the nervous system, but its role remains uncertain. Prion diseases depend on an aggregation of the protein that is likely to interfere with its normal function. Loss of function does not in itself cause neurodegeneration, but whether it contributes to the clinical features of the disease remains an open question. Patients with classical Creutzfeldt-Jakob disease (CJD) have a higher than expected incidence of epilepsy. To study the mechanisms by which loss of PrP function may underlie changes in vulnerability to epilepsy in disease, we used several acute epilepsy models: we applied a variety of convulsant treatments (zero-magnesium, bicuculline, and pentylenetetrazol) to slices in vitro from PrP knockout (Prnp0/0) and control mice. In all three epilepsy models, we found that longer delays and/or higher concentrations of convulsants were necessary to generate spontaneous epileptiform activity in Prnp0/0 mice. These results together indicate an increased seizure threshold in Prnp0/0 mice, suggesting that loss of PrP function cannot explain a predisposition to seizures initiation in CJD.


Assuntos
Encéfalo/metabolismo , Epilepsia/metabolismo , Príons/metabolismo , Animais , Convulsivantes/farmacologia , Síndrome de Creutzfeldt-Jakob/complicações , Síndrome de Creutzfeldt-Jakob/metabolismo , Modelos Animais de Doenças , Epilepsia/etiologia , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp
6.
Neuropharmacology ; 56(2): 481-92, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18955071

RESUMO

Adenosine serves as a homeostatic factor, regulating hippocampal activity through A(1) receptor-mediated inhibition. Gamma frequency oscillations, associated with cognitive functions, emerge from increased network activity. Here we test the hypothesis that hippocampal gamma oscillations are modulated by ambient adenosine levels. In mouse hippocampal slices exogenous adenosine suppressed the power of both kainate-induced gamma oscillations and spontaneous gamma oscillations, observed in a subset of slices in normal aCSF. Kainate-induced gamma oscillation power was suppressed by the A(1) receptor agonist PIA and potentiated by the A(1) receptor antagonist 8-CPT to three times matched control values with an EC(50) of 1.1microM. 8-CPT also potentiated spontaneous gamma oscillation power to five times control values. The A(2A) receptor agonist CGS21680 potentiated kainate-induced gamma power to two times control values (EC(50) 0.3nM), but this effect was halved in the presence of 8-CPT. The A(2A) receptor antagonist ZM241385 suppressed kainate-induced gamma power. The non-selective adenosine receptor antagonist caffeine induced gamma oscillations in slices in control aCSF and potentiated both kainate-induced gamma and spontaneous gamma oscillations to three times control values (EC(50) 28muM). Decreasing endogenous adenosine levels with adenosine deaminase increased gamma oscillations. Increasing endogenous adenosine levels with the adenosine kinase inhibitor 5-iodotubericidin suppressed gamma oscillations. Partial hypoxia-induced suppression of gamma oscillations could be prevented by 8-CPT. These observations indicate that gamma oscillation strength is powerfully modulated by ambient levels of adenosine through A(1) receptors, opposed by A(2A) receptors. Increased gamma oscillation strength is likely to contribute to the beneficial cognitive effects of caffeine.


Assuntos
Adenosina/farmacologia , Relógios Biológicos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Receptor A1 de Adenosina/fisiologia , Receptor A2A de Adenosina/fisiologia , Adenosina/análogos & derivados , Antagonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Análise de Fourier , Hipocampo/fisiologia , Hipóxia/fisiopatologia , Técnicas In Vitro , Ácido Caínico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenetilaminas/farmacologia , Teofilina/análogos & derivados , Teofilina/farmacologia , Tioinosina/análogos & derivados , Tioinosina/farmacologia , Fatores de Tempo , Triazinas/farmacologia , Triazóis/farmacologia
7.
Neuroscience ; 132(4): 1151-7, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15857717

RESUMO

Normal brain ageing is associated with a decline in hippocampal memory functions. Neuronal oscillations in the gamma frequency band have been implicated in various cognitive tasks. In this study we test the effect of normal brain ageing on gamma oscillations in the mouse hippocampus in vitro. gamma Oscillations were evoked by either 10 microM carbachol or 100 nM kainate in ventral hippocampus slices from young (>5 month) and aged (>22 month) C57Bl/J6 mice. In slices from young mice carbachol-induced gamma oscillations were more regular and more coherent than those induced by kainate. Compared with young, the power in the 20-80 Hz frequency range in area CA3 of slices from aged mice was reduced to 14% for kainate-induced oscillations and to 7% for carbachol-induced oscillations, whereas waveform, dominant frequency and coherence of the oscillation were unchanged. Local network properties were assessed by paired-pulse stimulation of Schaffer collateral/commissural fibers. The excitatory synaptic response in stratum radiatum of CA3 was reduced, in correlation with the antidromic population spike, but functional inhibition in CA3 and CA1 was unaffected. Changes in local network properties could not explain the reduced gamma oscillation strength. Since oscillations driven by two different pathways are similarly affected with age, an age-dependent effect on tonic depolarizing drive of principal cells is unlikely to explain the current results. Other mechanisms, including a change with age in the use-dependent modulation of synaptic strength, should account for the impaired gamma oscillations in the aged hippocampus that may contribute to age-dependent memory impairment.


Assuntos
Envelhecimento , Hipocampo/fisiologia , Fatores Etários , Animais , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Estimulação Elétrica , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Hipocampo/efeitos dos fármacos , Ácido Caínico/farmacologia , Masculino , Camundongos , Técnicas de Cultura de Órgãos
8.
Mol Cell Neurosci ; 25(4): 650-63, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15080894

RESUMO

Networks of GABAergic interneurons are of utmost importance in generating and promoting synchronous activity and are involved in producing coherent oscillations. These neurons are characterized by their fast-spiking rate and by the expression of the Ca(2+)-binding protein parvalbumin (PV). Alteration of their inhibitory activity has been proposed as a major mechanism leading to epileptic seizures and thus the role of PV in maintaining the stability of neuronal networks was assessed in knockout (PV-/-) mice. Pentylenetetrazole induced generalized tonic-clonic seizures in all genotypes, but the severity of seizures was significantly greater in PV-/- than in PV+/+ animals. Extracellular single-unit activity recorded from over 1000 neurons in vivo in the temporal cortex revealed an increase of units firing regularly and a decrease of cells firing in bursts. In the hippocampus, PV deficiency facilitated the GABA(A)ergic current reversal induced by high-frequency stimulation, a mechanism implied in the generation of epileptic activity. We postulate that PV plays a key role in the regulation of local inhibitory effects exerted by GABAergic interneurons on pyramidal neurons. Through an increase in inhibition, the absence of PV facilitates synchronous activity in the cortex and facilitates hypersynchrony through the depolarizing action of GABA in the hippocampus.


Assuntos
Encéfalo/fisiopatologia , Epilepsia/fisiopatologia , Predisposição Genética para Doença/genética , Rede Nervosa/fisiopatologia , Parvalbuminas/deficiência , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/fisiologia , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Interneurônios/fisiologia , Camundongos , Camundongos Knockout , Rede Nervosa/metabolismo , Inibição Neural/genética , Parvalbuminas/genética , Pentilenotetrazol , Células Piramidais/fisiologia , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologia
9.
Neuroscience ; 114(4): 983-94, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12379253

RESUMO

Intrahippocampal tetanus toxin induces a period of chronic recurrent limbic seizures in adult rats, associated with a failure of inhibition in the hippocampus. The rats normally gain remission from their seizures after 6-8 weeks, but show persistent cognitive impairment. In this study we assessed which changes in cellular and network properties could account for the enduring changes in this model, using intracellular and extracellular field recordings in hippocampal slices from rats injected with tetanus toxin or vehicle, 5 months previously. In CA1 pyramidal neurones from toxin-injected rats, the slope of the action potential upstroke was reduced by 32%, the fast afterhyperpolarisation by 32% and the slow afterhyperpolarisation by 54%, suggesting changes in voltage-dependent conductances. The excitatory postsynaptic potential slope was reduced by 60% and the population synaptic potential slope was reduced at all stimulus intensities, suggesting a reduced afferent input in CA1. Paired-pulse stimulation showed an increase of the excitability ratio and an increase of cellular excitability only for the second pulse, suggesting a reduced inhibition. The polysynaptic inhibitory postsynaptic potential was reduced by 34%, whereas neither the inhibitory postsynaptic potential at subthreshold stimulus intensities,nor the pharmacologically isolated monosynaptic inhibitory postsynaptic potential were different in toxin-injected rats, suggesting a reduced synaptic excitation of interneurones. Stratum radiatum stimuli in toxin-injected rats, and not in controls, evoked antidromic activation of CA1 neurones, demonstrating axonal sprouting into areas normally devoid of CA1 pyramidal cell axons.We conclude that this combination of enduring changes in cellular and network properties, both pro-epileptic (increased recurrent excitatory connectivity, reduced recurrent inhibition and reduced afterhyperpolarisations) and anti-epileptic (impaired firing and reduced excitation), reaches a balance that allows remission of seizures, perhaps at the price of persistent cognitive impairment.


Assuntos
Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Inibição Neural/efeitos dos fármacos , Toxina Tetânica/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Epilepsia/fisiopatologia , Potenciais Evocados/efeitos dos fármacos , Hipocampo/citologia , Masculino , Memória/fisiologia , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
10.
Neuroscience ; 115(1): 251-61, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12401338

RESUMO

The effect of quinine on pyramidal cell intrinsic properties, extracellular potassium transients, and epileptiform activity was studied in vitro using the rat hippocampal slice preparation. Quinine enhanced excitatory post-synaptic potentials and decreased fast- and slow-inhibitory post-synaptic potentials. Quinine reduced the peak potassium rise following tetanic stimulation but did not affect the potassium clearance rate. Epileptiform activity induced by either low-Ca(2+) or high-K(+) artificial cerebrospinal fluid (ACSF) was suppressed by quinine. The frequency of spontaneous inter-ictal bursting induced by picrotoxin, high-K(+), or 4-aminopyridine was significantly increased. In normal ACSF, quinine did not affect CA1 pyramidal cell resting membrane potential, input resistance, threshold for action potentials triggered by intracellular or extracellular stimulation, or the orthodromic and antidromic evoked population spike amplitude. The main effects of quinine on intrinsic cell properties were to increase action potential duration and to reduce firing frequency during sustained membrane depolarizations, but not at normal resting membrane potentials. This attenuation was enhanced at increasingly depolarized membrane potentials. These results suggest that quinine suppresses extracellular potassium transients and ictal activity and modulates inter-ictal activity by limiting the firing rate of cells in a voltage-dependent manner. Because quinine does not affect 'normal' neuronal function, it may merit consideration as an anticonvulsant.


Assuntos
Epilepsia/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Canais de Potássio/fisiologia , Quinina/farmacologia , Animais , Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Potenciais Pós-Sinápticos Excitadores/fisiologia , Espaço Extracelular/fisiologia , Técnicas In Vitro , Masculino , Neurônios/fisiologia , Quinina/uso terapêutico , Ratos , Ratos Sprague-Dawley
11.
Neuroscience ; 105(3): 579-87, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11516825

RESUMO

The transition from brief interictal to prolonged seizure, or 'ictal', activity is a crucial event in epilepsy. In vitro slice models can mimic many phenomena observed in the electroencephalogram of patients, including transition from interictal to ictaform or seizure-like activity. In field potential recordings, three discharge types can be distinguished: (1) primary discharges making up the typical interictal burst, (2) secondary bursts, lasting several hundred milliseconds, and (3) tertiary discharges lasting for seconds, constituting the ictal series of bursts. The roles of chemical synapses in these classes of burst have been explored in detail. Here we test the hypothesis that gap junctions are necessary for the generation of secondary bursts. In rat hippocampal slices, epileptiform activity was induced by exposure to 0-Mg(2+). Epileptiform discharges started in the CA3 subfield, and generally consisted of primary discharges followed by 4-13 secondary bursts. Three drugs that block gap junctions, halothane (5-10 mM), carbenoxolone (100 microM) and octanol (0.2-1.0 mM), abolished the secondary discharges, but left the primary bursts intact. The gap junction opener trimethylamine (10 mM) reversibly induced secondary and tertiary discharges. None of these agents altered intrinsic or synaptic properties of CA3 pyramidal cells at the doses used. Surgically isolating the CA3 subfield made secondary discharges disappear, and trimethylamine under these conditions was able to restore them.We conclude that gap junctions can contribute to the prolongation of epileptiform discharges.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Epilepsia/fisiopatologia , Junções Comunicantes/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Deficiência de Magnésio/fisiopatologia , Células Piramidais/efeitos dos fármacos , Potenciais de Ação/fisiologia , Anestésicos Inalatórios/farmacologia , Animais , Antiulcerosos/farmacologia , Carbenoxolona/farmacologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Modelos Animais de Doenças , Epilepsia/induzido quimicamente , Epilepsia/patologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Junções Comunicantes/fisiologia , Halotano/farmacologia , Hipocampo/patologia , Magnésio/metabolismo , Masculino , Metilaminas/farmacologia , Octanóis/farmacologia , Técnicas de Cultura de Órgãos , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
12.
J Neurophysiol ; 85(6): 2412-22, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11387387

RESUMO

Fast oscillations at gamma and beta frequency are relevant to cognition. During this activity, excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs) are generated rhythmically and synchronously and are thought to play an essential role in pacing the oscillations. The dynamic changes occurring to excitatory and inhibitory synaptic events during repetitive activation of synapses are therefore relevant to fast oscillations. To cast light on this issue in the CA1 region of the hippocampal slice, we used a train of stimuli, to the pyramidal layer, comprising 1 s at 40 Hz followed by 2--3 s at 10 Hz, to mimic the frequency pattern observed during fast oscillations. Whole cell current-clamp recordings from CA1 pyramidal neurons revealed that individual stimuli at 40 Hz produced EPSPs riding on a slow biphasic hyperpolarizing-depolarizing waveform. EPSP amplitude initially increased; it then decreased concomitantly with the slow depolarization and with a large reduction in membrane resistance. During the subsequent 10-Hz train: the cells repolarized, EPSP amplitude and duration increased to above control, and no IPSPs were detected. In the presence of GABA(A) receptor antagonists, the slow depolarization was blocked, and EPSPs of constant amplitude were generated by 10-Hz stimuli. Altering pyramidal cell membrane potential affected the time course of the slow depolarization, with the peak being reached earlier at more negative potentials. Glial recordings revealed that the trains were associated with extracellular potassium accumulation, but the time course of this event was slower than the neuronal depolarization. Numerical simulations showed that intracellular chloride accumulation (due to massive GABAergic activation) can account for these observations. We conclude that synchronous activation of inhibitory synapses at gamma frequency causes a rapid chloride accumulation in pyramidal neurons, decreasing the efficacy of inhibitory potentials. The resulting transient disinhibition of the local network leads to a short-lasting facilitation of polysynaptic EPSPs. These results set constraints on the role that synchronous, rhythmic IPSPs may play in pacing oscillations at gamma frequency in the CA1 hippocampal region.


Assuntos
Hipocampo/fisiologia , Inibição Neural/fisiologia , Periodicidade , Células Piramidais/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bicuculina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas GABAérgicos/farmacologia , Hipocampo/citologia , Masculino , Ácidos Fosfínicos/farmacologia , Propanolaminas/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley
13.
J Neurosci ; 20(18): 6820-9, 2000 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10995826

RESUMO

The cellular and network mechanisms of the transition of brief interictal discharges to prolonged seizures are a crucial issue in epilepsy. Here we used hippocampal slices exposed to ACSF containing 0 Mg(2+) to explore mechanisms for the transition to prolonged (3-42 sec) seizure-like ("ictal") discharges. Epileptiform activity, evoked by Shaffer collateral stimulation, triggered prolonged bursts in CA1, in 50-60% of slices, from both adult and young (postnatal day 13-21) rats. In these cases the first component of the CA1 epileptiform burst was followed by a train of population spikes at frequencies in the gamma band and above (30-120 Hz, reminiscent of tetanically evoked gamma oscillations). The gamma burst in turn could be followed by slower repetitive "tertiary" bursts. Intracellular recordings from CA1 during the gamma phase revealed long depolarizations, action potentials rising from brief apparent hyperpolarizations, and a drop of input resistance. The CA1 gamma rhythm was completely blocked by bicuculline (10-50 microm), by ethoxyzolamide (100 microm), and strongly attenuated in hyperosmolar perfusate (50 mm sucrose). Subsequent tertiary bursts were also blocked by bicuculline, ethoxyzolamide, and in hyperosmolar perfusate. In all these cases intracellular recordings from CA3 revealed only short depolarizations. We conclude that under epileptogenic conditions, gamma band oscillations arise from GABA(A)ergic depolarizations and that this activity may lead to the generation of ictal discharges.


Assuntos
Potenciais de Ação , Relógios Biológicos , Epilepsia/metabolismo , Hipocampo/fisiopatologia , Receptores de GABA-A/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Relógios Biológicos/efeitos dos fármacos , Inibidores da Anidrase Carbônica/farmacologia , Modelos Animais de Doenças , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Epilepsia/fisiopatologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Técnicas In Vitro , Magnésio/metabolismo , Magnésio/farmacologia , Masculino , Concentração Osmolar , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Tempo de Reação
14.
Epilepsia ; 40(11): 1512-22, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10565577

RESUMO

PURPOSE: To determine the modulation of sodium currents in hippocampal CA1 neurons by carbamazepine (CBZ) and valproate (VPA), before and after kindling epileptogenesis. METHODS: Voltage-dependent sodium current was measured in isolated hippocampal CA1 neurons, by using the whole-cell voltage-clamp technique. CBZ (15-100 microM) or VPA (0.5-5 mM) was applied by bath perfusion. Cells from fully kindled rats were compared with controls, 1 day and 5 weeks after the tenth generalized seizure. RESULTS: CBZ did not affect sodium current activation but selectively shifted the voltage dependence of steady-state inactivation to more hyperpolarized potentials. One day after the last kindled generalized seizure, the shift induced by 15 microM CBZ was 2.1+/-0.5 mV (mean +/- SEM; n = 20) compared with 4.3+/-0.3 mV (n = 16; p<0.001) in matched controls. The EC50 of the concentration-effect relation was 57+/-6 microM compared with 34+/-2 microM (p<0.01) in controls. Five weeks after kindling, these values had recovered to a level not different from control. VPA induces at a relatively high concentration a similar but smaller shift in voltage dependence of inactivation than does CBZ. After kindling, the shift induced by 2 mM VPA (2.8+/-0.6 mV; n = 19) was not different from controls (3.0+/-0.5 mV; n = 22). The EC50 for VPA was 2.6+/-0.3 mM compared with 2.5+/-0.4 mM in controls. CONCLUSIONS: Both CBZ and VPA selectively modulate the voltage dependence of sodium current steady-state inactivation and as a consequence reduce cellular excitability. The effect of CBZ was reduced immediately after kindling epileptogenesis, apparently by a reduced affinity of its receptor. In contrast, the shift induced by VPA was not different at any stage after kindling epileptogenesis. The change in CBZ sensitivity after kindling is related to epileptic activity rather than to the epileptic state, because it almost completely recovers in a period without seizures.


Assuntos
Anticonvulsivantes/farmacologia , Carbamazepina/farmacologia , Epilepsia/fisiopatologia , Hipocampo/efeitos dos fármacos , Excitação Neurológica/fisiologia , Canais de Sódio/fisiologia , Ácido Valproico/farmacologia , Animais , Hipocampo/fisiopatologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
15.
J Neurosci ; 19(18): 8104-13, 1999 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10479710

RESUMO

gamma (30-100 Hz) and beta (10-30 Hz) oscillations follow tetanic stimulation in the CA1 region of the rat hippocampal slice. Pyramidal neurons undergo a slow depolarization after the tetanus and generate synchronous action potentials. The slow depolarization was previously attributed to metabotropic glutamate receptor (mGluR) activation. However, we found that this event was mediated by GABA(A) receptors, being blocked by bicuculline (50 microM) and accompanied by a dramatic drop in input resistance. Experiments with NMDA and non-NMDA glutamate receptor antagonists revealed that fast synaptic excitation was not necessary for oscillations. IPSPs were strongly depressed during the oscillations. Instead, synchronization was caused by field effects, as shown by: (1) Action potentials of pyramidal neurons proximal (<200 micrometer) to the stimulation site were often preceded by negative deflections of the intracellular potential that masked a net transmembrane depolarization caused by the population spike. (2) Pyramidal neurons located on the surface of the slice, where field effects are weak, fired repetitively but were not synchronized to the network activity. (3) A moderate decrease (50 mOsm) in artificial CSF (ACSF) osmolality did not affect the slow depolarization but increased oscillation amplitude and duration and recruited previously silent neurons into oscillations. (4) 50 mOsm increase in ACSF osmolality dramatically reduced, or abolished, post-tetanic oscillations. Phasic IPSPs, not detectable in proximal neurons, were present, late in the oscillation, in cells located 200-400 micrometer from the stimulation site and possibly contributed to slowing the rhythm during the gamma to beta transition.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bicuculina/farmacologia , Cicloleucina/análogos & derivados , Cicloleucina/farmacologia , Estimulação Elétrica , Técnicas In Vitro , Masculino , Modelos Neurológicos , Oscilometria , Células Piramidais/efeitos dos fármacos , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação , Receptores de GABA-A/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
16.
Epilepsy Res ; 32(1-2): 309-20, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9761330

RESUMO

In a selected group of temporal lobe epilepsy patients with seizures refractory to pharmacological treatment, pharmacological seizure control can be attained by surgical resection of the epileptic zone. We investigated to what extent pharmaco-resistance is reflected in a reduced response at the cellular level, in neurons acutely isolated from the temporal cortex resected in 20 patients. We studied the effect of valproic acid (VPA) on the transient sodium current, measured under whole-cell voltage-clamp conditions. We compared neurons from patients with temporal lobe sclerosis (S) with neurons from patients without hippocampal sclerosis (nS) and compared hippocampal CA1 neurons (CA) with neocortical neurons (NC). We could not detect differences in the voltage dependence and kinetics of sodium current activation and inactivation in any of the group comparisons. VPA shifted the voltage dependence of steady-state inactivation (expressed as V(h,i) in a Boltzmann fit) to more hyperpolarized levels. The shift induced by 2 mM VPA was -5.1 +/- 0.7 mV in CA-S (n = 13), -5.1 +/- 0.7 mV in CA-nS (n = 25), -4.3 +/- 0.5 mV in NC-S (n = 17) and -4.9 +/- 0.5 mV in NC-nS (n = 16) The relation between concentration and voltage shift had an EC50 of 1.4 +/- 0.2 mM VPA (n = 16) and a maximal shift of 9.6 +/- 0.9 mV. We conclude that pharmaco-resistance in these patients is not associated with a changed modulation of the sodium current by VPA. Results are discussed in the light of a reduced sodium current modulation by carbamazepine in CA1 neurons of patients with hippocampal sclerosis and of similar observations in the kindling model of epileptogenesis.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Neurônios/fisiologia , Canais de Sódio/fisiologia , Lobo Temporal/fisiopatologia , Anticonvulsivantes/farmacologia , Resistência a Medicamentos , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/patologia , Hipocampo/fisiologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Esclerose/patologia , Esclerose/fisiopatologia , Canais de Sódio/efeitos dos fármacos
17.
Neuroscience ; 86(1): 99-107, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9692746

RESUMO

Cellular excitability of CA1 neurons from a kindled focus in the rat hippocampus is persistently increased. The changes in the underlying voltage-dependent sodium current were characterized under whole-cell voltage-clamp conditions. We compared sodium currents in acutely isolated CA1 neurons from kindled rats with those in matched controls, one day and five weeks after cessation of kindling stimulations. The sodium current in CA1 neurons was tetrodotoxin sensitive and inactivated completely with two time-constants. In 97 cells from control rats, the current evoked at -20 mV consisted of a fast-inactivating component of 3.8 +/- 0.2 nA which decayed with a time-constant of 1.0 +/- 0.1 ms, and a slow-inactivating component of 1.2 +/- 0.1 nA with a time-constant of 3.6 +/- 0.1 ms. The potential of half-maximal inactivation was -72.2 +/- 1.0 mV for the fast-inactivating component and -63.2 +/- 1.0 mV for the slow-inactivating component. The time-constant of recovery at -80 mV was 14.1 +/- 0.4 ms for the fast-inactivating component and 9.3 +/- 0.4 ms for the slow-inactivating component. One day after kindling, the voltage dependence of inactivation of the slow-inactivating and the fast-inactivating component was shifted in the depolarizing direction (3.2 +/- 1.3 and 3.0 +/- 1.3 mV, respectively). The voltage dependence of recovery from inactivation was shifted in the same direction. Five weeks after kindling, the shift in voltage dependence of inactivation was (3.3 +/- 1.2 and 2.9 +/- 1.2 mV, respectively) and was accompanied by a 20% increase in sodium current amplitude. The voltage-dependent activation was not different after kindling. The changes in sodium current inactivation will increase the number of channels available for activation and may enhance the maximum firing rate. This implies that the changes in sodium current inactivation will contribute to the enhanced excitability of pyramidal neurons observed after kindling.


Assuntos
Epilepsia/fisiopatologia , Hipocampo/fisiopatologia , Excitação Neurológica/fisiologia , Células Piramidais/fisiologia , Canais de Sódio/fisiologia , Animais , Hipocampo/fisiologia , Masculino , Potenciais da Membrana , Ratos , Ratos Wistar , Tempo de Reação , Canais de Sódio/efeitos dos fármacos , Tetrodotoxina/farmacologia , Fatores de Tempo
18.
Eur J Pharmacol ; 341(2-3): 145-52, 1998 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-9543232

RESUMO

Recent studies have shown that long-chain polyunsaturated fatty acids can prevent cardiac arrhythmias, attributed to the reduction in excitability of cardiomyocytes, owing mainly to a shift in hyperpolarizing direction of the inactivation curves of both Na+ and Ca2+ currents and to a slowed recovery from inactivation. Qualitatively similar effects of polyunsaturated fatty acids on inactivation parameters have been observed in freshly isolated hippocampal neurons. Since the same effects are presumed to underlie the action of some established anticonvulsant drugs, polyunsaturated fatty acids might have an anticonvulsant action as well. We have investigated this for eicosapentaenoic acid, docosahexaenoic acid, linoleic acid and oleic acid, employing cortical stimulation in rats, a seizure model allowing the determination of the full anticonvulsant effect-time profile in freely moving, individual animals. I.v. infusion of 40 micromol of eicosapentaenoic acid or docosahexaenoic acid over a period of 30 min, modestly increased the threshold for localized seizure activity after 6 h by 73 +/- 13 microA (mean +/- S.E.M.; n = 7) and 77 +/- 17 microA (n = 7), respectively, and the threshold for generalized seizure activity by 125 +/- 20 and 130 +/- 19 microA, respectively (P < 0.001). The thresholds remained elevated for 6 h after infusion, but returned to baseline the next day. Free plasma concentrations in rats treated with eicosapentaenoic acid or docosahexaenoic acid, averaged 5.7 +/- 1.6 microM (n = 4) for eicosapentaenoic acid and 12.9 +/- 1.8 microM (n = 5) for docosahexaenoic acid at the end of infusion, but declined to undetectable levels within 3 h. Linoleic acid and oleic acid were less effective. Possible mechanisms for the modest anticonvulsant effect but of long duration with the polyunsaturated fatty acids are discussed.


Assuntos
Ácidos Graxos Insaturados/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/uso terapêutico , Estimulação Elétrica , Ácido Linoleico/uso terapêutico , Masculino , Ácido Oleico/uso terapêutico , Avaliação de Resultados em Cuidados de Saúde , Ratos , Ratos Wistar , Ácido Valproico/uso terapêutico
19.
Neuroscience ; 75(1): 57-67, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8923523

RESUMO

Calcium is an important second messenger which plays a role in the regulation of neuronal excitability and in many forms of synaptic plasticity. In kindling epileptogenesis, a model of focal epilepsy, calcium plays an important role. The in situ patch-clamp technique was used to record calcium currents in slices obtained from kindled rats and controls. We found that low-voltage-activated calcium currents, probably of dendritic origin, were larger after kindling (80%). The transient high-voltage-activated calcium currents were also enhanced after kindling (50% higher). The increase of the current is accompanied by a decrease in the time constant of inactivation. The change was still present six weeks after the kindling stimulations were stopped. These data demonstrate that low-voltage-activated calcium currents are involved in epileptogenesis. Their enhancement in the dendrites will boost synaptic depolarization and result in enhanced calcium influx, which is critically dependent on the specific activation pattern.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Epilepsias Parciais/patologia , Hipocampo/patologia , Excitação Neurológica , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , Sistemas do Segundo Mensageiro , Potenciais de Ação , Animais , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
20.
Proc Natl Acad Sci U S A ; 93(22): 12559-63, 1996 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-8901621

RESUMO

Recent evidence indicates that long-chain polyunsaturated fatty acids (PUFAs) can prevent cardiac arrhythmias by a reduction of cardiomyocyte excitability. This was shown to be due to a modulation of the voltage-dependent inactivation of both sodium (INa) and calcium (ICa) currents. To establish whether PUFAs also regulate neuronal excitability, the effects of PUFAs on INa and ICa were assessed in CA1 neurons freshly isolated from the rat hippocampus. Extracellular application of PUFAs produced a concentration-dependent shift of the voltage dependence of inactivation of both INa and ICa to more hyperpolarized potentials. Consequently, they accelerated the inactivation and retarded the recovery from inactivation. The EC50 for the shift of the INa steady-state inactivation curve was 2.1 +/- 0.4 microM for docosahexaenoic acid (DHA) and 4 +/- 0.4 microM for eicosapentaenoic acid (EPA). The EC50 for the shift on the ICa inactivation curve was 2.1 +/- 0.4 for DHA and > 15 microM for EPA. Additionally, DHA and EPA suppressed both INa and ICa amplitude at concentrations > 10 microM. PUFAs did not affect the voltage dependence of activation. The monounsaturated oleic acid and the saturated palmitic acid were virtually ineffective. The combined effects of the PUFAs on INa and ICa may reduce neuronal excitability and may exert anticonvulsive effects in vivo.


Assuntos
Canais de Cálcio/metabolismo , Ácidos Graxos Insaturados/farmacologia , Hipocampo/citologia , Neurônios/metabolismo , Canais de Sódio/metabolismo , Animais , Canais de Cálcio/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/farmacologia , Relação Dose-Resposta a Droga , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Insaturados/administração & dosagem , Hipocampo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Ácido Oleico/administração & dosagem , Ácido Oleico/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Canais de Sódio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA