Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Biosci ; 23(12): e2300156, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37579128

RESUMO

Dynamic hydrogel systems from N,O-carboxymethyl chitosan (NOCC) are investigated in the past years, which has facilitated their widespread use in many biomedical engineering applications. However, the influence of the polymer's oxidation levels on the hydrogel biological properties is not fully investigated. In this study, chitosan is converted into NOCC and introduced to react spontaneously with oxidized xanthan gum (OXG) to form several injectable hydrogels with controlled degradability. Different oxidation levels of xanthan gum, as well as NOCC/OXG volume ratios, are trialed. The infrared spectroscopy spectra verify chemical modification on OXG and successful crosslinking. With increasing oxidation levels, more dialdehyde groups are introduced into the OXG, resulting in changes in physical properties including gelation, swelling, and self-healing efficiency. Under different volume ratios, the hydrogel shows a stable structure and rigidity with higher mechanical properties, and a slower degradation rate. The shear-thinning and self-healing properties of the hydrogels are confirmed. In vitro assays with L929 cells show the biocompatibility of all formulations although the use of a high amount of OXG15 and OXG25 limited the cell proliferation capacity. Findings in this study suggested a suitable amount of OXG at different oxidation levels in NOCC hydrogel systems for tissue engineering applications.


Assuntos
Quitosana , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/química , Polímeros
2.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080616

RESUMO

A synergistic multilayer membrane design is necessary to satisfy a multitude of requirements of an ideal wound dressing. In this study, trilayer dressings with asymmetric wettability, composed of electrospun polycaprolactone (PCL) base membranes coated with oligomer chitosan (COS) in various concentrations of polyvinylpyrrolidone (PVP), are fabricated for wound dressing application. The membranes are expected to synergize the hygroscopic, antibacterial, hemostatic, and biocompatible properties of PCL and COS. The wound dressing was coated by spraying the solution of 3% COS and 6% PVP on the PCL base membrane (PVP6-3) three times, which shows good interaction with biological subjects, including bacterial strains and blood components. PVP6-3 samples confirm the diameter of inhibition zones of 20.0 ± 2.5 and 17.9 ± 2.5 mm against Pseudomonas aeruginosa and Staphylococcus aureus, respectively. The membrane induces hemostasis with a blood clotting index of 74% after 5 min of contact. In the mice model, wounds treated with PVP6-3 closed 95% of the area after 10 days. Histological study determines the progression of skin regeneration with the construction of granulation tissue, new vascular systems, and hair follicles. Furthermore, the newly-growth skin shares structural resemblances to that of native tissue. This study suggests a simple approach to a multi-purpose wound dressing for clinical treatment.

3.
Adv Exp Med Biol ; 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34739720

RESUMO

INTRODUCTION: Adipose-derived stem cells (ADSCs) are mesenchymal stem cells (MSCs) that are found in adipose tissues, which are easily obtained from liposuction procedures using an enzyme mixture. The adhering cells are then selectively cultivated. ADSCs have great potential in regenerative medicine because they are plentiful, easily accessible, and less invasive. They also have an impressive proliferation ability and can be differentiated into mesenchymal lineages and trans-differentiating into many other cell types. In particular, they have extraordinary abilities in immunomodulation. This study aimed to investigate the effects of culture conditions (hypoxia, starvation, and TNF-α treatment) on the immunomodulation of human ADSCs. METHODS: Human ADSCs were expanded in vitro in the standard condition before they were cultured in different stress conditions. ADSCs from passages fifth were confirmed as MSCs by some standard assays suggested by the International Society for Cell and Gene Therapy. These MSCs were used to culture in four different stress conditions: hypoxia, serum starvation, and TNF-α treatment in 48 h. After treatments, MSCs were used to evaluate their immunomodulation capacity using MSCs mixed lymphocyte reaction assay, and the concentrations of IDO, PGE2, IL-6, and IL-10 were secreted in the culture medium. RESULTS: In different stress conditions, ADSCs exhibited different responses related to their immunomodulation. In serum starvation, ADSCs exerted a strong secretion of IDO and PGE2, whereas they showed strong IL-6 secretion in the TNF-α-supplemented medium. When exposed to lymphocytes, ADSCs caused an increase in the ratio of regulatory T cells (Tregs), and co-culture lymphocytes with ADSCs induced in hypoxic malnutrition conditions increased the IL-10 level the most. In addition, when exposed to dendritic cells (DCs), ADSCs inhibited the mature marker expressions of the DCs. CONCLUSION: The current research showed that ADSCs change their immunomodulation properties to survive in in vitro culture environments. Treatment of ADSCs in the starvation medium for 48 h can increase the immunomodulation of ADSCs.

4.
Sci Rep ; 8(1): 8524, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867159

RESUMO

New therapy development is critically needed for ovarian cancer. We used the chicken egg CAM assay to evaluate efficacy of anticancer drug delivery using recently developed biodegradable PMO (periodic mesoporous organosilica) nanoparticles. Human ovarian cancer cells were transplanted onto the CAM membrane of fertilized eggs, resulting in rapid tumor formation. The tumor closely resembles cancer patient tumor and contains extracellular matrix as well as stromal cells and extensive vasculature. PMO nanoparticles loaded with doxorubicin were injected intravenously into the chicken egg resulting in elimination of the tumor. No significant damage to various organs in the chicken embryo occurred. In contrast, injection of free doxorubicin caused widespread organ damage, even when less amount was administered. The lack of toxic effect of nanoparticle loaded doxorubicin was associated with specific delivery of doxorubicin to the tumor. Furthermore, we observed excellent tumor accumulation of the nanoparticles. Lastly, a tumor could be established in the egg using tumor samples from ovarian cancer patients and that our nanoparticles were effective in eliminating the tumor. These results point to the remarkable efficacy of our nanoparticle based drug delivery system and suggests the value of the chicken egg tumor model for testing novel therapies for ovarian cancer.


Assuntos
Bioensaio , Membrana Corioalantoide , Doxorrubicina , Portadores de Fármacos , Modelos Biológicos , Nanopartículas , Neoplasias Ovarianas , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Feminino , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
5.
Onco Targets Ther ; 9: 4441-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27499638

RESUMO

BACKGROUND: Breast cancer (BC) is one of the leading cancers in women. Recent progress has enabled BC to be cured with high efficiency. However, late detection or metastatic disease often renders the disease untreatable. Additionally, relapse is the main cause of death in BC patients. Breast cancer stem cells (BCSCs) are considered to cause the development of BC and are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using dendritic cells (DCs) to treat tumor-bearing humanized mice models. MATERIALS AND METHODS: NOD/SCID mice were used to produce the humanized mice by transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mammary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were isolated from the human umbilical cord blood, and immature DCs were produced from cultured mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature DCs were vaccinated to BC humanized mice with a dose of 10(6) cells/mice, and the survival percentage was monitored in both treated and untreated groups. RESULTS: The results showed that DC vaccination could target BCSCs and reduce the tumor size and prolong survival. CONCLUSION: These results suggested that targeting BCSCs with DCs is a promising therapy for BC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA