Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
ACS Omega ; 9(17): 19182-19192, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708195

RESUMO

Lightweight biobased insulation polyurethane (BPU) composite foams with high fire-resistance efficiency are interested in building effective energy and low environmental impact today. This study focuses on manufacturing lightweight BPU from liquefied bamboo polyols and biomass resources, including rice husk and wood flour. Then, they are combined with three flame retardant (FR) additives, such as aluminum diethyl phosphinate, aluminum trihydroxide, and diammonium phosphate, to improve their fire resistance performance. The physicochemical properties, microstructure, thermal stability, mechanical properties, and flame-retardant properties of the BPU composites are characterized to optimize their compromise properties. The results showed that composites with optimized FRs achieved UL94 V-0 and those with nonoptimized FRs reached UL94 HB. The limiting oxygen index exhibited that the fire resistance of BPU composites could increase up to 21-37% within FR additives. In addition, the thermal stability of BPU composites was significantly improved in a temperature range of 300-700 °C and the compressive strength of the BPU composites was also enhanced with the presence of FRs. The scanning electron microscopy observation showed an influence of FRs on the morphology and cell size of the BPU composites. The bio-PU-derived samples in this study showed significantly low thermal conductivity values, demonstrating their remarkable thermal insulation effectiveness.

2.
BMC Bioinformatics ; 25(1): 106, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461247

RESUMO

BACKGROUND: Predicting protein-protein interactions (PPIs) from sequence data is a key challenge in computational biology. While various computational methods have been proposed, the utilization of sequence embeddings from protein language models, which contain diverse information, including structural, evolutionary, and functional aspects, has not been fully exploited. Additionally, there is a significant need for a comprehensive neural network capable of efficiently extracting these multifaceted representations. RESULTS: Addressing this gap, we propose xCAPT5, a novel hybrid classifier that uniquely leverages the T5-XL-UniRef50 protein large language model for generating rich amino acid embeddings from protein sequences. The core of xCAPT5 is a multi-kernel deep convolutional siamese neural network, which effectively captures intricate interaction features at both micro and macro levels, integrated with the XGBoost algorithm, enhancing PPIs classification performance. By concatenating max and average pooling features in a depth-wise manner, xCAPT5 effectively learns crucial features with low computational cost. CONCLUSION: This study represents one of the initial efforts to extract informative amino acid embeddings from a large protein language model using a deep and wide convolutional network. Experimental results show that xCAPT5 outperforms recent state-of-the-art methods in binary PPI prediction, excelling in cross-validation on several benchmark datasets and demonstrating robust generalization across intra-species, cross-species, inter-species, and stringent similarity contexts.


Assuntos
Redes Neurais de Computação , Proteínas , Proteínas/química , Algoritmos , Sequência de Aminoácidos , Aminoácidos
3.
Mol Breed ; 44(2): 13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38317771

RESUMO

Tomato (Solanum lycopersicum L.) is one of the most important crops in the world for its fruit production. Advances in cutting-edge techniques have enabled the development of numerous critical traits related to the quality and quantity of tomatoes. Genetic engineering techniques, such as gene transformation and gene editing, have emerged as powerful tools for generating new plant varieties with superior traits. In this study, we induced parthenocarpic traits in a population of elite tomato (ET) lines. At first, the adaptability of ET lines to genetic transformation was evaluated to identify the best-performing lines by transforming the SlANT1 gene overexpression cassette and then later used to produce the SlIAA9 knockout lines using the CRISPR/Cas9 system. ET5 and ET8 emerged as excellent materials for these techniques and showed higher efficiency. Typical phenotypes of knockout sliaa9 were clearly visible in G0 and G1 plants, in which simple leaves and parthenocarpic fruits were observed. The high efficiency of the CRISPR/Cas9 system in developing new tomato varieties with desired traits in a short period was demonstrated by generating T-DNA-free homozygous sliaa9 knockout plants in the G1 generation. Additionally, a simple artificial fertilization method was successfully applied to recover seed production from parthenocarpic plants, securing the use of these varieties as breeding materials. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01452-1.

4.
Plant Biotechnol J ; 22(1): 19-36, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37794706

RESUMO

Prime editing (PE) technology utilizes an extended prime editing guide RNA (pegRNA) to direct a fusion peptide consisting of nCas9 (H840) and reverse transcriptase (RT) to a specific location in the genome. This enables the installation of base changes at the targeted site using the extended portion of the pegRNA through RT activity. The resulting product of the RT reaction forms a 3' flap, which can be incorporated into the genomic site through a series of biochemical steps involving DNA repair and synthesis pathways. PE has demonstrated its effectiveness in achieving almost all forms of precise gene editing, such as base conversions (all types), DNA sequence insertions and deletions, chromosomal translocation and inversion and long DNA sequence insertion at safe harbour sites within the genome. In plant science, PE could serve as a groundbreaking tool for precise gene editing, allowing the creation of desired alleles to improve crop varieties. Nevertheless, its application has encountered limitations due to efficiency constraints, particularly in dicotyledonous plants. In this review, we discuss the step-by-step mechanism of PE, shedding light on the critical aspects of each step while suggesting possible solutions to enhance its efficiency. Additionally, we present an overview of recent advancements and future perspectives in PE research specifically focused on plants, examining the key technical considerations of its applications.


Assuntos
Inversão Cromossômica , RNA Guia de Sistemas CRISPR-Cas , Alelos , Reparo do DNA , Edição de Genes , DNA , Sistemas CRISPR-Cas
5.
Front Plant Sci ; 14: 1274337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111884

RESUMO

Neomicrocalamus and Temochloa are closely related to bamboo genera. However, when considered with newly discovered and morphologically similar material from China and Vietnam, the phylogenetic relationship among these three groups was ambiguous in the analyses based on DNA regions. Here, as a means of investigating the relationships among the three bamboo groups and exploring potential sources of genomic conflicts, we present a phylogenomic examination based on the whole plastome, single-nucleotide polymorphism (SNP), and single-copy nuclear (SCN) gene datasets. Three different phylogenetic hypotheses were found. The inconsistency is attributed to the combination of incomplete lineage sorting and introgression. The origin of newly discovered bamboos is from introgressive hybridization between Temochloa liliana (which contributed 80.7% of the genome) and Neomicrocalamus prainii (19.3%), indicating that the newly discovered bamboos are closer to T. liliana in genetics. The more similar morphology and closer distribution elevation also imply a closer relationship between Temochloa and newly discovered bamboos.

6.
Front Plant Sci ; 14: 1271368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908833

RESUMO

Plants consistently encounter environmental stresses that negatively affect their growth and development. To mitigate these challenges, plants have developed a range of adaptive strategies, including the unfolded protein response (UPR), which enables them to manage endoplasmic reticulum (ER) stress resulting from various adverse conditions. The CRISPR-Cas system has emerged as a powerful tool for plant biotechnology, with the potential to improve plant tolerance and resistance to biotic and abiotic stresses, as well as enhance crop productivity and quality by targeting specific genes, including those related to the UPR. This review highlights recent advancements in UPR signaling pathways and CRISPR-Cas technology, with a particular focus on the use of CRISPR-Cas in studying plant UPR. We also explore prospective applications of CRISPR-Cas in engineering UPR-related genes for crop improvement. The integration of CRISPR-Cas technology into plant biotechnology holds the promise to revolutionize agriculture by producing crops with enhanced resistance to environmental stresses, increased productivity, and improved quality traits.

7.
Polymers (Basel) ; 15(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376280

RESUMO

Leather is often used to make comfortable shoes due to its soft and breathable nature. However, its innate ability to retain moisture, oxygen and nutrients renders it a suitable medium for the adsorption, growth, and survival of potentially pathogenic microorganisms. Consequently, the intimate contact between the foot skin and the leather lining surface in shoes, which are subject to prolonged periods of sweating, may result in the transmission of pathogenic microorganisms and cause discomfort for the wearer. To address such issues, we modified pig leather with silver nanoparticles (AgPBL) that were bio-synthesized from Piper betle L. leaf extract as an antimicrobial agent via the padding method. The evidence of AgPBL embedded into the leather matrix, leather surface morphology and element profile of AgPBL-modified leather samples (pLeAg) was investigated using colorimetry, SEM, EDX, AAS and FTIR analyses. The colorimetric data confirmed that the pLeAg samples changed to a more brown color with higher wet pickup and AgPBL concentration, owing to the higher quantity of AgPBL uptake onto the leather surfaces. The antibacterial and antifungal activities of the pLeAg samples were both qualitatively and quantitatively evaluated using AATCC TM90, AATCC TM30 and ISO 16187:2013 test methods, approving a good synergistic antimicrobial efficiency of the modified leather against Escherichia coli and Staphylococcus aureus bacteria, a yeast Candida albicans and a mold Aspergillus niger. Additionally, the antimicrobial treatments of pig leather did not negatively impact its physico-mechanical properties, including tear strength, abrasion resistance, flex resistance, water vapour permeability and absorption, water absorption and desorption. These findings affirmed that the AgPBL-modified leather met all the requirements of upper lining according to the standard ISO 20882:2007 for making hygienic shoes.

8.
Front Plant Sci ; 14: 1186932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255559

RESUMO

Recently, CRISPR-Cas9-based genome editing has been widely used for plant breeding. In our previous report, a tomato gene encoding hybrid proline-rich protein 1 (HyPRP1), a negative regulator of salt stress responses, has been edited using a CRISPR-Cas9 multiplexing approach that resulted in precise eliminations of its functional domains, proline-rich domain (PRD) and eight cysteine-motif (8CM). We subsequently demonstrated that eliminating the PRD domain of HyPRP1 in tomatoes conferred the highest level of salinity tolerance. In this study, we characterized the edited lines under several abiotic and biotic stresses to examine the possibility of multiple stress tolerance. Our data reveal that the 8CM removal variants of HK and the KO alleles of both HK and 15T01 cultivars exhibited moderate heat stress tolerance. Similarly, plants carrying either the domains of the PRD removal variant (PR1v1) or 8CM removal variants (PR2v2 and PR2v3) showed better germination under osmosis stress (up to 200 mM mannitol) compared to the WT control. Moreover, the PR1v1 line continuously grew after 5 days of water cutoff. When the edited lines were challenged with pathogenic bacteria of Pseudomonas syringae pv. tomato (Pto) DC3000, the growth of the bacterium was significantly reduced by 2.0- to 2.5-fold compared to that in WT plants. However, the edited alleles enhanced susceptibility against Fusarium oxysporum f. sp. lycopersici, which causes fusarium wilt. CRISPR-Cas9-based precise domain editing of the SlHyPRP1 gene generated multi-stress-tolerant alleles that could be used as genetic materials for tomato breeding.

9.
Lancet Infect Dis ; 23(9): 1085-1094, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37230105

RESUMO

BACKGROUND: In previous trials, point-of-care testing of C-reactive protein (CRP) concentrations safely reduced antibiotic use in non-severe acute respiratory infections in primary care. However, these trials were done in a research-oriented context with close support from research staff, which could have influenced prescribing practices. To better inform the potential for scaling up point-of-care testing of CRP in respiratory infections, we aimed to do a pragmatic trial of the intervention in a routine care setting. METHODS: We did a pragmatic, cluster-randomised controlled trial at 48 commune health centres in Viet Nam between June 1, 2020, and May 12, 2021. Eligible centres served populations of more than 3000 people, handled 10-40 respiratory infections per week, had licensed prescribers on site, and maintained electronic patient databases. Centres were randomly allocated (1:1) to provide point-of-care CRP testing plus routine care or routine care only. Randomisation was stratified by district and by baseline prescription level (ie, the proportion of patients with suspected acute respiratory infections to whom antibiotics were prescribed in 2019). Eligible patients were aged 1-65 years and visiting the commune health centre for a suspected acute respiratory infection with at least one focal sign or symptom and symptoms lasting less than 7 days. The primary endpoint was the proportion of patients prescribed an antibiotic at first attendance in the intention-to-treat population. The per-protocol analysis included only people who underwent CRP testing. Secondary safety outcomes included time to resolution of symptoms and frequency of hospitalisation. This trial is registered with ClinicalTrials.gov, NCT03855215. FINDINGS: 48 commune health centres were enrolled and randomly assigned, 24 to the intervention group (n=18 621 patients) and 24 to the control group (n=21 235). 17 345 (93·1%) patients in the intervention group were prescribed antibiotics, compared with 20 860 (98·2%) in the control group (adjusted relative risk 0·83 [95% CI 0·66-0·93]). Only 2606 (14%) of 18 621 patients in the intervention group underwent CRP testing and were included in the per-protocol analysis. When analyses were restricted to this population, larger reductions in prescribing were noted in the intervention group compared with the control group (adjusted relative risk 0·64 [95% CI 0·60-0·70]). Time to resolution of symptoms (hazard ratio 0·70 [95% CI 0·39-1·27]) and frequency of hospitalisation (nine in the intervention group vs 17 in the control group; adjusted relative risk 0·52 [95% CI 0·23-1·17]) did not differ between groups. INTERPRETATION: Use of point-of-care CRP testing efficaciously reduced prescription of antibiotics in patients with non-severe acute respiratory infections in primary health care in Viet Nam without compromising patient recovery. The low uptake of CRP testing suggests that barriers to implementation and compliance need to be addressed before scale-up of the intervention. FUNDING: Australian Government, UK Government, and the Foundation for Innovative New Diagnostics.


Assuntos
Antibacterianos , Proteína C-Reativa , Testes Imediatos , Infecções Respiratórias , Humanos , Antibacterianos/uso terapêutico , Austrália , Proteína C-Reativa/análise , Atenção Primária à Saúde , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico , População do Sudeste Asiático , Vietnã/epidemiologia , Análise por Conglomerados
10.
Nat Prod Res ; 37(16): 2647-2652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36154790

RESUMO

The first chemical study of the whole Impatiens parvisepala S. X. Yu & Y. T. Hou led to the isolation of a new triterpene saponin, named Iparvisepala-1 (6) along with ten known compounds, which cover three flavonoid glycosides (1-3), one dihydrochalcone glucoside (4), one triterpenoid saponin (5), one triterpene (7) and four miscellaneous compounds (8-11). Their structures were elucidated by MS, NMR spectroscopic analyses as well as by comparisons of spectra data with those of the related published literatures. Additionally, flavonoid glucoside 2 showed impressive effect on α-glucosidase inhibition with the IC50 value of 12.53 ± 0.39 µM, much better than that of the positive control acabose (IC50 = 197.53 ± 2.68 µM).

11.
Planta ; 255(6): 130, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35587292

RESUMO

MAIN CONCLUSION: Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption. The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic engineering/breeding techniques? Would its products be labeled as "conventional" or "GMO"? There are so many questions to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and beyond.


Assuntos
Edição de Genes , Melhoramento Vegetal , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas/genética
12.
Nat Prod Res ; 36(12): 3229-3233, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34498968

RESUMO

Sixteen compounds (1-16) were isolated from Impatiens chapaensis. Chemical structures were determined by spectroscopic analyses and comparisons with previously published data. This report is the first to identify compounds 1, 5-7, 10, 12-14, and 16 from the genus Impatiens. Seven chosen isolates (5, 7, 10, 11, 12, 15, and 16) were submitted for α-glucosidase inhibition assays with acarbose as the positive control (IC50 = 227.14 ± 13.71 µM). Flavonoid 5 exhibited a significant inhibitory effect (IC50 = 101.00 ± 9.01 µM).


Assuntos
Inibidores de Glicosídeo Hidrolases , Impatiens , Extratos Vegetais , Flavonoides/química , Flavonoides/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Impatiens/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , alfa-Glucosidases
13.
Biotechnol J ; 17(7): e2100413, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34846104

RESUMO

BACKGROUND: Spontaneous double-stranded DNA breaks (DSBs) frequently occur within the genome of all living organisms and must be well repaired for survival. Recently, more important roles of the DSB repair pathways that were previously thought to be minor pathways, such as single-strand annealing (SSA), have been shown. Nevertheless, the biochemical mechanisms and applications of the SSA pathway in genome editing have not been updated. PURPOSE AND SCOPE: Understanding the molecular mechanism of SSA is important to design potential applications in gene editing. This review provides insights into the recent progress of SSA studies and establishes a model for their potential applications in precision genome editing. SUMMARY AND CONCLUSION: The SSA mechanism involved in DNA DSB repair appears to be activated by a complex signaling cascade starting with broken end sensing and 5'-3' resection to reveal homologous repeats on the 3' ssDNA overhangs that flank the DSB. Annealing the repeats would help to amend the discontinuous ends and restore the intact genome, resulting in the missing of one repeat and the intervening sequence between the repeats. We proposed a model for CRISPR-Cas-based precision insertion or replacement of DNA fragments to take advantage of the characteristics. The proposed model can add a tool to extend the choice for precision gene editing. Nevertheless, the model needs to be experimentally validated and optimized with SSA-favorable conditions for practical applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , DNA , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Edição de Genes/métodos
14.
Wellcome Open Res ; 7: 309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37854668

RESUMO

Background: Case-based surveillance of antimicrobial resistance (AMR) provides more actionable data than isolate- or sample-based surveillance. We developed A Clinically Oriented antimicrobial Resistance surveillance Network (ACORN) as a lightweight but comprehensive platform, in which we combine clinical data collection with diagnostic stewardship, microbiological data collection and visualisation of the linked clinical-microbiology dataset. Data are compatible with WHO GLASS surveillance and can be stratified by syndrome and other metadata. Summary metrics can be visualised and fed back directly for clinical decision-making and to inform local treatment guidelines and national policy. Methods: An ACORN pilot was implemented in three hospitals in Southeast Asia (1 paediatric, 2 general) to collect clinical and microbiological data from patients with community- or hospital-acquired pneumonia, sepsis, or meningitis. The implementation package included tools to capture site and laboratory capacity information, guidelines on diagnostic stewardship, and a web-based data visualisation and analysis platform. Results: Between December 2019 and October 2020, 2294 patients were enrolled with 2464 discrete infection episodes (1786 community-acquired, 518 healthcare-associated and 160 hospital-acquired). Overall, 28-day mortality was 8.7%. Third generation cephalosporin resistance was identified in 54.2% (39/72) of E. coli and 38.7% (12/31) of K. pneumoniae isolates . Almost a quarter of S. aureus isolates were methicillin resistant (23.0%, 14/61). 290/2464 episodes could be linked to a pathogen, highlighting the level of enrolment required to achieve an acceptable volume of isolate data. However, the combination with clinical metadata allowed for more nuanced interpretation and immediate feedback of results. Conclusions: ACORN was technically feasible to implement and acceptable at site level. With minor changes from lessons learned during the pilot ACORN is now being scaled up and implemented in 15 hospitals in 9 low- and middle-income countries to generate sufficient case-based data to determine incidence, outcomes, and susceptibility of target pathogens among patients with infectious syndromes.

15.
Biodes Res ; 2022: 0001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37905201

RESUMO

Precision genome editing is highly desired for crop improvement. The recently emerged CRISPR/Cas technology offers great potential applications in precision plant genome engineering. A prime editing (PE) approach combining a reverse transcriptase (RT) with a Cas9 nickase and a "priming" extended guide RNA (gRNA) has shown a high frequency for precise genome modification in mammalian cells and several plant species. Nevertheless, the applications of the PE approach in dicot plants are still limited and inefficient. We designed and tested prime editors for precision editing of a synthetic sequence in a transient assay and for desirable alleles of 10 loci in tomato by stable transformation. Our data obtained by targeted deep sequencing also revealed only low PE efficiencies in both the tobacco and tomato systems. Further assessment of the activities of the PE components uncovered that the fusion of RT to Cas9 and the structure of PE gRNAs (pegRNAs) negatively affected the cleaving activity of the Cas9 nuclease. The self-complementarity between the primer binding sequences (PBSs) and spacer sequence might pose risks to the activity of the Cas9 complex. However, modifying the pegRNA sequences by shortening or introducing mismatches to the PBSs to reduce their melting temperatures did not enhance the PE efficiency at the MADS-box protein (SlMBP21), alcobaca (SlALC), and acetolactate synthase 1 (SlALS1) loci. Our data show challenges of the PE approach in tomato, indicating that a further improvement of the PE system for successful applications is demanded, such as the use of improved expression systems for enriching active PE complexes.

17.
Microorganisms ; 9(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34683436

RESUMO

Comprehensive insight into the microbiota of the gut of humans and animals, as well as their living environment, in communities with a high background of antibiotic use and antibiotic resistance genes is scarce. Here, we used 16S rRNA gene sequencing to describe the (dis)similarities in the microbiota of feces from humans (n = 107), domestic animals (n = 36), water (n = 89), and processed food (n = 74) in a cohort with individual history of antibiotic use in northern Vietnam. A significantly lower microbial diversity was observed among individuals who used antibiotics in the past 4 months (n = 44) compared to those who did not (n = 63). Fecal microbiota of humans was more diverse than nonhuman samples and shared a small part of its amplicon sequence variants (ASVs) with feces from animals (7.4% (3.2-9.9)), water (2.2% (1.2-2.8)), and food (3.1% (1.5-3.1)). Sharing of ASVs between humans and companion animals was not associated with the household. However, we did observe a correlation between an Enterobacteriaceae ASV and the presence of extended-spectrum beta-lactamase CTX-M-group-2 encoding genes in feces from humans and animals (p = 1.6 × 10-3 and p = 2.6 × 10-2, respectively), hinting toward an exchange of antimicrobial-resistant strains between reservoirs.

18.
Data Brief ; 39: 107482, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34712758

RESUMO

With the development of digital technology, Vietnam's education has been undergoing significant changes. This is considered one of the eight important fields of the National Digital Transformation, so it needs to take advantage of opportunities to be able to train high-quality human resources according to international standards. Beside, the Covid-19 pandemic has quickly put pressure on the previously predicted trends in education such as the "Future University". This paper shows the data of an investigation on the factors affecting the readiness of Vietnamese students for digital transformation in the above context. The data is built based on the TAM model and sociological investigation method to collect multidimensional information from many perspectives of different individuals to have a basis for assessing the level of influence. The survey includes the main questions corresponding to the independent variables in the model: Self-study ability, Attitude, Perceived Usefulness, Perceived Ease of Use, and Covid-19. The authors distributed the questionnaire online and collected 913 valid responses.

19.
Front Plant Sci ; 12: 722552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447405

RESUMO

Plant gene targeting (GT) can be utilized to precisely replace up to several kilobases of a plant genome. Recent studies using the powerful clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases significantly improved plant GT efficiency. However, GT for loci without associated selection markers is still inefficient. We previously utilized Lachnospiraceae bacterium Cas12a (LbCas12a) in combination with a replicon for tomato GT and obtained high GT efficiency with some selection markers. In this study, we advance our GT system by inhibiting the cNHEJ pathway with small chemical molecules such as NU7441. Further optimization of the GT is also possible with the treatment of silver nitrate possibly via its pronounced actions in ethylene inhibition and polyamine production. Importantly, the GT efficiency is significantly enhanced with the use of a temperature-tolerant LbCas12a (ttLbCas12a) that is capable of performing target cleavage even at low temperatures. Targeted deep sequencing, as well as conventional methods, are used for the assessment of the editing efficiency at both cell and plant levels. Our work demonstrates the significance of the selection of gene scissors, the appropriate design and number of LbCas12a crRNAs, the use of chemical treatments, and the establishment of favorable experimental conditions for further enhancement of plant HDR to enable efficient GT in tomato.

20.
AEM Educ Train ; 5(3): e10620, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34222754

RESUMO

BACKGROUND: The ACGME Milestone Project created a competency-based trainee assessment tool. Subcompetencies (SCs) are scored on a 5-point scale; level 4 is recommended for graduation. The 2018 Milestones Report found that across subspecialties, not all graduates attain level 4 for every SC. OBJECTIVE: The objective was to describe the number of pediatric emergency medicine (PEM) fellows who achieve ≥ level 4 in all 23 SCs at graduation and identify SCs where level 4 is not achieved and factors predictive of not achieving a level 4. METHODS: This is a multicenter, retrospective cohort study of PEM fellows from 2014 to 2018. Program directors provided milestone reports. Descriptive analysis of SC scores was performed. Subanalyses assessed differences in residency graduation scores, first-year fellowship scores, and the rate of milestone attainment between fellows who did and did not attain ≥ level 4 at graduation. RESULTS: Data from 392 fellows were obtained. There were no SCs in which all fellows attained ≥ level 4 at graduation; the range of fellows scoring < level 4 per SC was 7% to 39%. A total of 67% of fellows did not attain ≥ level 4 on one or more SC. While some fellows failed to attain ≥ level 4 on up to all 23 SCs, 26% failed to meet level 4 on only one or two. In 19 SCs, residency graduation and/or first year fellow scores were lower for fellows who did not attain ≥ level 4 at graduation compared to those who did (mean difference = 0.74 points). Among 10 SCs, fellows who did not attain ≥ level 4 at graduation had a faster rate of improvement compared to those who did attain ≥ level 4. CONCLUSION: In our sample, 67% of PEM fellows did not attain level 4 for one or more of the SCs at graduation. Low scores during residency or early in fellowship may predict difficulty in meeting level 4 by fellowship completion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA