Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Cell ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821050

RESUMO

Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.

3.
Transl Res ; 266: 57-67, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38013006

RESUMO

TMEM165-CDG has first been reported in 2012 and manganese supplementation was shown highly efficient in rescuing glycosylation in isogenic KO cells. The unreported homozygous missense c.928G>C; p.Ala310Pro variant leading to a functional but unstable protein was identified. This patient was diagnosed at 2 months and displays a predominant bone phenotype and combined defects in N-, O- and GAG glycosylation. We administered for the first time a combined D-Gal and Mn2+ therapy to the patient. This fully suppressed the N-; O- and GAG hypoglycosylation. There was also striking improvement in biochemical parameters and in gastrointestinal symptoms. This study offers exciting therapeutic perspectives for TMEM165-CDG.


Assuntos
Proteínas de Transporte de Cátions , Defeitos Congênitos da Glicosilação , Humanos , Manganês/metabolismo , Galactose , Antiporters/metabolismo , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo
4.
Mol Genet Metab ; 140(3): 107674, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37542768

RESUMO

OBJECTIVES: Patients with PMM2-CDG develop acute events (stroke-like episodes (SLEs), thromboses, haemorrhages, seizures, migraines) associated with both clotting factors (factor XI) and coagulation inhibitors (antithrombin, protein C and protein S) deficiencies. The aim of the study was to correlate acute events to haemostasis and propose practical guidelines. METHODS: In this multicentric retrospective study, we evaluated clinical, radiological, haemostasis and electroencephalography data for PMM2-CDG patients hospitalized for acute events. Cerebral events were classified as thrombosis, haemorrhage, SLE, or "stroke mimic" (SM: normal brain imaging or evoking a migraine). RESULTS: Thirteen patients had a total of 31 acute episodes: 27 cerebral events with 7 SLEs, 4 venous thromboses, 4 haemorrhages (3 associated with thrombosis), 15 SMs at a mean age of 7.7 years; 4 non-cerebral thromboses, one of which included bleeding. A trigger was frequently involved (infection, head trauma). Although sometimes normal at baseline state, factor XI, antithrombin and protein C levels decreased during these episodes. No correlation between haemostasis anomalies and type of acute event was found. DISCUSSION: Acute events in PMM2-CDG are not negligible and are associated with haemostasis anomalies. An emergency protocol is proposed for their prevention and treatment (https://www.filiere-g2m.fr/urgences). For cerebral events, brain Magnetic Resonance Imaging with perfusion weight imaging and diffusion sequences, electroencephalogram and haemostasis protein levels guide the treatment: anticoagulation, antithrombin or fresh frozen plasma supplementation, antiepileptic therapy. Preventing bleeding and thrombosis is required in cases of surgery, prolonged immobilization, hormone replacement therapy. CONCLUSION: Acute events in PMM2-CDG are associated with abnormal haemostasis, requiring practical guidance.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases) , Acidente Vascular Cerebral , Trombose , Humanos , Criança , Proteína C , Estudos Retrospectivos , Fator XI , Defeitos Congênitos da Glicosilação/patologia , Antitrombinas , Hemostasia , Hemorragia
5.
Ann Clin Transl Neurol ; 9(9): 1465-1474, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35869884

RESUMO

Ultra-rare biallelic pathogenic variants in geranylgeranyl diphosphate synthase 1 (GGPS1) have recently been associated with muscular dystrophy/hearing loss/ovarian insufficiency syndrome. Here, we describe 11 affected individuals from four unpublished families with ultra-rare missense variants in GGPS1 and provide follow-up details from a previously reported family. Our cohort replicated most of the previously described clinical features of GGPS1 deficiency; however, hearing loss was present in only 46% of the individuals. This report consolidates the disease-causing role of biallelic variants in GGPS1 and demonstrates that hearing loss and ovarian insufficiency might be a variable feature of the GGPS1-associated muscular dystrophy.


Assuntos
Surdez , Dimetilaliltranstransferase , Perda Auditiva , Distrofias Musculares , Insuficiência Ovariana Primária , Dimetilaliltranstransferase/genética , Farnesiltranstransferase/genética , Feminino , Geraniltranstransferase/genética , Perda Auditiva/genética , Humanos , Distrofias Musculares/genética , Mutação de Sentido Incorreto
7.
Brain Commun ; 3(4): fcab221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34729478

RESUMO

Adaptor protein complex 4-associated hereditary spastic paraplegia is caused by biallelic loss-of-function variants in AP4B1, AP4M1, AP4E1 or AP4S1, which constitute the four subunits of this obligate complex. While the diagnosis of adaptor protein complex 4-associated hereditary spastic paraplegia relies on molecular testing, the interpretation of novel missense variants remains challenging. Here, we address this diagnostic gap by using patient-derived fibroblasts to establish a functional assay that measures the subcellular localization of ATG9A, a transmembrane protein that is sorted by adaptor protein complex 4. Using automated high-throughput microscopy, we determine the ratio of the ATG9A fluorescence in the trans-Golgi-network versus cytoplasm and ascertain that this metric meets standards for screening assays (Z'-factor robust >0.3, strictly standardized mean difference >3). The 'ATG9A ratio' is increased in fibroblasts of 18 well-characterized adaptor protein complex 4-associated hereditary spastic paraplegia patients [mean: 1.54 ± 0.13 versus 1.21 ± 0.05 (standard deviation) in controls] and receiver-operating characteristic analysis demonstrates robust diagnostic power (area under the curve: 0.85, 95% confidence interval: 0.849-0.852). Using fibroblasts from two individuals with atypical clinical features and novel biallelic missense variants of unknown significance in AP4B1, we show that our assay can reliably detect adaptor protein complex 4 function. Our findings establish the 'ATG9A ratio' as a diagnostic marker of adaptor protein complex 4-associated hereditary spastic paraplegia.

8.
Am J Hum Genet ; 108(11): 2130-2144, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34653363

RESUMO

Congenital disorders of glycosylation (CDGs) form a group of rare diseases characterized by hypoglycosylation. We here report the identification of 16 individuals from nine families who have either inherited or de novo heterozygous missense variants in STT3A, leading to an autosomal-dominant CDG. STT3A encodes the catalytic subunit of the STT3A-containing oligosaccharyltransferase (OST) complex, essential for protein N-glycosylation. Affected individuals presented with variable skeletal anomalies, short stature, macrocephaly, and dysmorphic features; half had intellectual disability. Additional features included increased muscle tone and muscle cramps. Modeling of the variants in the 3D structure of the OST complex indicated that all variants are located in the catalytic site of STT3A, suggesting a direct mechanistic link to the transfer of oligosaccharides onto nascent glycoproteins. Indeed, expression of STT3A at mRNA and steady-state protein level in fibroblasts was normal, while glycosylation was abnormal. In S. cerevisiae, expression of STT3 containing variants homologous to those in affected individuals induced defective glycosylation of carboxypeptidase Y in a wild-type yeast strain and expression of the same mutants in the STT3 hypomorphic stt3-7 yeast strain worsened the already observed glycosylation defect. These data support a dominant pathomechanism underlying the glycosylation defect. Recessive mutations in STT3A have previously been described to lead to a CDG. We present here a dominant form of STT3A-CDG that, because of the presence of abnormal transferrin glycoforms, is unusual among dominant type I CDGs.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Genes Dominantes , Hexosiltransferases/genética , Proteínas de Membrana/genética , Doenças Musculoesqueléticas/genética , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Sequência de Aminoácidos , Domínio Catalítico , Pré-Escolar , Feminino , Heterozigoto , Hexosiltransferases/química , Humanos , Masculino , Proteínas de Membrana/química , Pessoa de Meia-Idade , Linhagem , Homologia de Sequência de Aminoácidos
9.
Clin Chim Acta ; 521: 104-106, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34245688

RESUMO

SLC37A4-CDG is an emerging congenital disorder of glycosylation which is characterized by a dominant inheritance and a major coagulopathy originating from the liver. Recent studies took interest in the biochemical alterations found in this CDG and showed that they consisted of multiple glycosylation abnormalities, which result from mislocalization of the endoplasmic reticulum glucose-6-phosphate transporter and associated Golgi homeostasis defects. In this work, we highlight in six affected individuals abnormal patterns for various serum N-glycoproteins and bikunin proteoglycan isoforms, together with specific alterations of the mass spectra of endoglycosidase H-released serum N-glycans. Collectively, these data complement previous findings, help to better delineate SLC37A4-CDG and could present interest in diagnosing this disease.


Assuntos
Defeitos Congênitos da Glicosilação , Antiporters/metabolismo , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilação , Complexo de Golgi , Humanos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Polissacarídeos
10.
Mol Genet Metab Rep ; 28: 100775, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34141584

RESUMO

Congenital disorders of glycosylation (CDG) constitute an ever-growing group of genetic diseases affecting the glycosylation of proteins. CDG individuals usually present with severe multisystem disorders. MAN1B1-CDG is a CDG with nonspecific clinical symptoms such as intellectual deficiency and developmental delay. Although up to 40 affected individuals were described so far, its final diagnosis is not straightforward using common biochemical methods due to the trace-level accumulation of defective glycan structures. In this study, we present three unreported MAN1B1-CDG individuals and propose a decision tree to reach diagnosis using a panel of techniques ranging from exome sequencing to gel electrophoresis and mass spectrometry. The occurrence of MAN1B1-CDG in patients showing unexplained intellectual disability and development delay, as well as a particular transferrin glycosylation profile, can be ascertained notably using matrix assisted laser desorption/ionization - time of flight (MALDI-TOF) mass spectrometry analysis of endo-ß-acetylglucosaminidase H-released serum N-glycans. In addition to reporting new pathogenic variants and additional clinical signs such as hypersialorrhea, we highlight particular biochemical features of MAN1B1-CDG with potential glycoprotein-specific glycosylation defects.

11.
Am J Hum Genet ; 108(6): 1040-1052, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33964207

RESUMO

SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.


Assuntos
Antiporters/genética , Defeitos Congênitos da Glicosilação/etiologia , Retículo Endoplasmático/patologia , Hepatopatias/complicações , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Adulto , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Genes Dominantes , Glicosilação , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem
12.
Clin Chim Acta ; 519: 285-290, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34022244

RESUMO

We identified three cases of congenital disorders of glycosylation (CDG) with Golgi homeostasis disruption, one ATP6V0A2-CDG and two COG4-CDG, with normal transferrin screening analyses. Patient 1 (P1) presented at birth with cutis laxa. Patient 2 (P2) and patient 3 (P3) are adult siblings and presented with severe symptoms evocative of inborn errors of metabolism. Targeted gene sequencing in P1 revealed pathogenic ATP6V0A2 variants, shared by her affected older brother. In P2 and P3, whole exome sequencing revealed a homozygous COG4 variant of unknown significance. In all affected individuals, transferrin analysis was normal. Mass-spectrometry based serum N-glycome analysis and two-dimensional electrophoresis (2-DE) of haptoglobin and of mucin core 1 O-glycosylated apolipoprotein C-III (apoC-III) were performed. All results of second-line N-glycosylation analyses were initially normal. However, apoC-III 2-DE revealed characteristic "apoC-III1" pattern in P1 and specific "apoC-III0" patterns in P2 and P3. In P2 and P3, this allowed reclassifying the variant as likely pathogenic according to ACMG guidelines. These cases highlight the existence of normal transferrin patterns in CDG with Golgi homeostasis disruption, putting the clinicians at risk of misdiagnosing patients. Furthermore, they show the potential of apoC-III 2-DE in diagnosing this type of CDG, with highly specific patterns in COG-CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Transferrina , Apolipoproteína C-III/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Feminino , Glicosilação , Homeostase , Humanos , Recém-Nascido , Masculino , Transferrina/metabolismo
13.
Hum Mutat ; 42(2): 142-149, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33300232

RESUMO

Signal sequence receptor protein 4 (SSR4) is a subunit of the translocon-associated protein complex, which participates in the translocation of proteins across the endoplasmic reticulum membrane, enhancing the efficiency of N-linked glycosylation. Pathogenic variants in SSR4 cause a congenital disorder of glycosylation: SSR4-congenital disorders of glycosylation (CDG). We describe three SSR4-CDG boys and review the previously reported. All subjects presented with hypotonia, failure to thrive, developmental delay, and dysmorphic traits and showed a type 1 serum sialotransferrin profile, facilitating the diagnosis. Genetic confirmation of this X-linked CDG revealed one de novo hemizygous deletion, one maternally inherited deletion, and one de novo nonsense mutation of SSR4. The present subjects highlight the similarities with a connective tissue disorder (redundant skin, joint laxity, blue sclerae, and vascular tortuosity). The connective tissue problems are relevant, and require preventive rehabilitation measures. As an X-linked disorder, genetic counseling is essential.


Assuntos
Proteínas de Ligação ao Cálcio , Defeitos Congênitos da Glicosilação , Glicoproteínas de Membrana , Receptores Citoplasmáticos e Nucleares , Receptores de Peptídeos , Proteínas de Ligação ao Cálcio/genética , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Tecido Conjuntivo/patologia , Glicosilação , Humanos , Masculino , Glicoproteínas de Membrana/genética , Fenótipo , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética
14.
J Inherit Metab Dis ; 43(6): 1360-1369, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33098580

RESUMO

Mannose phosphate isomerase MPI-CDG (formerly CDG-1b) is a potentially fatal inherited metabolic disease which is readily treatable with oral D-mannose. We retrospectively reviewed long-term outcomes of patients with MPI-CDG, all but one of whom were treated with D-mannose. Clinical, biological, and histological data were reviewed at diagnosis and on D-mannose treatment. Nine patients were diagnosed with MPI-CDG at a median age of 3 months. The presenting symptoms were diarrhea (n = 9), hepatomegaly (n = 9), hypoglycemia (n = 8), and protein loosing enteropathy (n = 7). All patients survived except the untreated one who died at 2 years of age. Oral D-mannose was started in eight patients at a median age of 7 months (mean 38 months), with a median follow-up on treatment of 14 years 9 months (1.5-20 years). On treatment, two patients developed severe portal hypertension, two developed venous thrombosis, and 1 displayed altered kidney function. Poor compliance with D-mannose was correlated with recurrence of diarrhea, thrombosis, and abnormal biological parameters including coagulation factors and transferrin profiles. Liver fibrosis persisted despite treatment, but two patients showed improved liver architecture during follow-up. This study highlights (i) the efficacy and safety of D-mannose treatment with a median follow-up on treatment of almost 15 years (ii) the need for life-long treatment (iii) the risk of relapse with poor compliance, (iii) the importance of portal hypertension screening (iv) the need to be aware of venous and renal complications in adulthood.


Assuntos
Defeitos Congênitos da Glicosilação/tratamento farmacológico , Manose-6-Fosfato Isomerase/deficiência , Manose/administração & dosagem , Manose/efeitos adversos , Administração Oral , Criança , Pré-Escolar , Feminino , Humanos , Hipertensão/etiologia , Lactente , Cirrose Hepática/patologia , Masculino , Adesão à Medicação , Estudos Retrospectivos , Transferrina/análise , Resultado do Tratamento , Trombose Venosa/etiologia
15.
J Inherit Metab Dis ; 43(6): 1349-1359, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32700771

RESUMO

Bikunin (Bkn) isoforms are serum chondroitin sulfate (CS) proteoglycans synthesized by the liver. They include two light forms, that is, the Bkn core protein and the Bkn linked to the CS chain (urinary trypsin inhibitor [UTI]), and two heavy forms, that is, pro-α-trypsin inhibitor and inter-α-trypsin inhibitor, corresponding to UTI esterified by one or two heavy chains glycoproteins, respectively. We previously showed that the Western-blot analysis of the light forms could allow the fast and easy detection of patients with linkeropathy, deficient in enzymes involved in the synthesis of the initial common tetrasaccharide linker of glycosaminoglycans. Here, we analyzed all serum Bkn isoforms in a context of congenital disorders of glycosylation (CDG) and showed very specific abnormal patterns suggesting potential interests for their screening and diagnosis. In particular, genetic deficiencies in V-ATPase (ATP6V0A2-CDG, CCDC115-CDG, ATP6AP1-CDG), in Golgi manganese homeostasis (TMEM165-CDG) and in the N-acetyl-glucosamine Golgi transport (SLC35A3-CDG) all share specific abnormal Bkn patterns. Furthermore, for each studied linkeropathy, we show that the light abnormal Bkn could be further in-depth characterized by two-dimensional electrophoresis. Moreover, besides being interesting as a specific biomarker of both CDG and linkeropathies, Bkn isoforms' analyses can provide new insights into the pathophysiology of the aforementioned diseases.


Assuntos
alfa-Globulinas/metabolismo , Antiporters/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Biomarcadores/sangue , Defeitos Congênitos da Glicosilação/sangue , Glicosilação , Humanos , Isoformas de Proteínas/metabolismo
16.
Hum Genet ; 139(10): 1325-1343, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32399598

RESUMO

Perrault syndrome is a rare heterogeneous condition characterised by sensorineural hearing loss and premature ovarian insufficiency. Additional neuromuscular pathology is observed in some patients. There are six genes in which variants are known to cause Perrault syndrome; however, these explain only a minority of cases. We investigated the genetic cause of Perrault syndrome in seven affected individuals from five different families, successfully identifying the cause in four patients. This included previously reported and novel causative variants in known Perrault syndrome genes, CLPP and LARS2, involved in mitochondrial proteolysis and mitochondrial translation, respectively. For the first time, we show that pathogenic variants in PEX6 can present clinically as Perrault syndrome. PEX6 encodes a peroxisomal biogenesis factor, and we demonstrate evidence of peroxisomal dysfunction in patient serum. This study consolidates the clinical overlap between Perrault syndrome and peroxisomal disorders, and highlights the need to consider ovarian function in individuals with atypical/mild peroxisomal disorders. The remaining patients had variants in candidate genes such as TFAM, involved in mtDNA transcription, replication, and packaging, and GGPS1 involved in mevalonate/coenzyme Q10 biosynthesis and whose enzymatic product is required for mouse folliculogenesis. This genomic study highlights the diverse molecular landscape of this poorly understood syndrome.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Aminoacil-tRNA Sintetases/genética , Proteínas de Ligação a DNA/genética , Dimetilaliltranstransferase/genética , Endopeptidase Clp/genética , Farnesiltranstransferase/genética , Predisposição Genética para Doença , Geraniltranstransferase/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Proteínas Mitocondriais/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Sequência de Bases , Criança , DNA Mitocondrial/genética , Feminino , Expressão Gênica , Disgenesia Gonadal 46 XX/diagnóstico , Disgenesia Gonadal 46 XX/patologia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Ovário/metabolismo , Ovário/patologia , Linhagem , Peroxissomos/metabolismo , Peroxissomos/patologia
17.
J Inherit Metab Dis ; 43(4): 671-693, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32266963

RESUMO

Mannose phosphate isomerase-congenital disorder of glycosylation (MPI-CDG) deficiency is a rare subtype of congenital disorders of protein N-glycosylation. It is characterised by deficiency of MPI caused by pathogenic variants in MPI gene. The manifestation of MPI-CDG is different from other CDGs as the patients suffer dominantly from gastrointestinal and hepatic involvement whereas they usually do not present intellectual disability or neurological impairment. It is also one of the few treatable subtypes of CDGs with proven effect of oral mannose. This article covers a complex review of the literature and recommendations for the management of MPI-CDG with an emphasis on the clinical aspect of the disease. A team of international experts elaborated summaries and recommendations for diagnostics, differential diagnosis, management, and treatment of each system/organ involvement based on evidence-based data and experts' opinions. Those guidelines also reveal more questions about MPI-CDG which need to be further studied.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/terapia , Manose-6-Fosfato Isomerase/deficiência , Defeitos Congênitos da Glicosilação/enzimologia , Consenso , Gerenciamento Clínico , Humanos , Manose-6-Fosfato Isomerase/genética , Guias de Prática Clínica como Assunto
18.
Brain Dev ; 41(9): 808-811, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31196579

RESUMO

In some patients with GLUT1 deficiency syndrome (GLUT1-DS), the diagnosis can be difficult to reach. We report a child with 2 inherited mutations suggesting an autosomal recessive transmission of SLC2A1 mutations. METHODS: The child and her parents were explored with erythrocyte 3-O-methyl-d-Glucose uptake, glucose uptake in oocytes expressing GLUT1 with the gene mutations and measure of the expression of GLUT1 at the surface of the circulating red blood cells by flow cytometry (METAglut1™ test). RESULTS: Both erythrocyte glucose uptake and glucose uptake in oocyte with the patient's mutations did not support the diagnosis of a mild GLUT1-DS phenotype with autosomal recessive transmission of SLC2A1 mutations. Instead, GLUT-1 expression at the surface of the erythrocytes appeared to better correlate with the clinical phenotypes in this family. CONCLUSION: The diagnostic value of these functional/expression tools need to be further studied with a focus on mild phenotype of GLUT1-DS.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/genética , Transportador de Glucose Tipo 1/genética , Proteínas de Transporte de Monossacarídeos/deficiência , Mutação , Erros Inatos do Metabolismo dos Carboidratos/dietoterapia , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Criança , Diagnóstico Diferencial , Família , Feminino , Humanos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo
19.
Hum Mutat ; 40(7): 938-951, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067009

RESUMO

ALG3-CDG is one of the very rare types of congenital disorder of glycosylation (CDG) caused by variants in the ER-mannosyltransferase ALG3. Here, we summarize the clinical, biochemical, and genetic data of four new ALG3-CDG patients, who were identified by a type I pattern of serum transferrin and the accumulation of Man5 GlcNAc2 -PP-dolichol in LLO analysis. Additional clinical symptoms observed in our patients comprise sensorineural hearing loss, right-descending aorta, obstructive cardiomyopathy, macroglossia, and muscular hypertonia. We add four new biochemically confirmed variants to the list of ALG3-CDG inducing variants: c.350G>C (p.R117P), c.1263G>A (p.W421*), c.1037A>G (p.N346S), and the intron variant c.296+4A>G. Furthermore, in Patient 1 an additional open-reading frame of 141 bp (AAGRP) in the coding region of ALG3 was identified. Additionally, we show that control cells synthesize, to a minor degree, a hybrid protein composed of the polypeptide AAGRP and ALG3 (AAGRP-ALG3), while in Patient 1 expression of this hybrid protein is significantly increased due to the homozygous variant c.160_196del (g.165C>T). By reviewing the literature and combining our findings with previously published data, we further expand the knowledge of this rare glycosylation defect.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Manosiltransferases/genética , Mutação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Animais , Células COS , Células Cultivadas , Pré-Escolar , Chlorocebus aethiops , Feminino , Humanos , Lactente , Masculino , Fases de Leitura Aberta , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Polimorfismo de Nucleotídeo Único
20.
Pediatr Res ; 85(3): 384-389, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30420707

RESUMO

BACKGROUND: Congenital disorders of glycosylation (CDG) includes ALG8 deficiency, a protein N-glycosylation defect with a broad clinical spectrum. If most of the 15 previously reported patients present an early-onset multisystem severe disease and early death, three patients including the cas princeps, present long-term survival and less severe symptoms. METHODS: In order to further characterize ALG8-CDG, two new ALG8 patients are described and mRNA analyses of the ALG8-CDG cas princeps were effected. RESULTS: One new patient exhibited a hepato-intestinal and neurological phenotype with two novel variants (c.91A > C p.Thr31Pro; c.139dup p.Thr47Asnfs*12). The other new patient, homozygous for a known variant (c.845C > T p.Ala282Val), presented a neurological phenotype with epilepsy, intellectual disability and retinis pigmentosa. The cas princeps ALG8-CDG patient was reported to have two heterozygous frameshift variants predicted to be without activity. We now described a novel ALG8 transcript variant in this patient and the 3D model of the putative encoded protein reveals no major difference with that of the normal ALG8 protein. CONCLUSION: The description of the two new ALG8 patients affirms that ALG8-CDG is a severe disease. In the cas princeps, as the originally described frameshift variants are degraded, the novel variant is promoted and could explain a milder phenotype.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Glucosiltransferases/genética , Processamento Alternativo , Emetina/farmacologia , Éxons , Feminino , Mutação da Fase de Leitura , França , Variação Genética , Glicosilação , Heterozigoto , Homozigoto , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Fenótipo , Retinose Pigmentar/genética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA