Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Immunol ; 14: 1250559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701441

RESUMO

Background: Galectin-3 (Gal-3) is a ß-galactoside-binding lectin that is highly expressed within the tumor microenvironment of aggressive cancers and has been suggested to predict a poor response to immune checkpoint therapy with the anti-PD-1 monoclonal antibody pembrolizumab. We aimed to assess if the effect of Gal-3 was a result of direct interaction with the immune checkpoint receptor. Methods: The ability of Gal-3 to interact with the PD-1/PD-L1 complex in the absence and presence of blocking antibodies was assessed in in vitro biochemical and cellular assays as well as in an in vivo syngeneic mouse cancer model. Results: Gal-3 reduced the binding of the checkpoint inhibitors pembrolizumab (anti-PD-1) and atezolizumab (anti-PD-L1), by potentiating the interaction between the PD-1/PD-L1 complex. In the presence of a highly selective Gal-3 small molecule inhibitor (GB1211) the binding of the anti-PD-1/anti-PD-L1 therapeutics was restored to control levels. This was observed in both a surface plasmon resonance assay measuring protein-protein interactions and via flow cytometry. Combination therapy with GB1211 and an anti-PD-L1 blocking antibody reduced tumor growth in an in vivo syngeneic model and increased the percentage of tumor infiltrating T lymphocytes. Conclusion: Our study suggests that Gal-3 can potentiate the PD-1/PD-L1 immune axis and potentially contribute to the immunosuppressive signalling mechanisms within the tumor microenvironment. In addition, Gal-3 prevents atezolizumab and pembrolizumab target engagement with their respective immune checkpoint receptors. Reversal of this effect with the clinical candidate GB1211 offers a potential enhancing combination therapeutic with anti-PD-1 and -PD-L1 blocking antibodies.


Assuntos
Anticorpos Monoclonais Humanizados , Galectina 3 , Animais , Camundongos , Anticorpos Bloqueadores , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico
2.
Immunity ; 55(11): 2044-2058.e5, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36288724

RESUMO

Tumors are populated by antigen-presenting cells (APCs) including macrophage subsets with distinct origins and functions. Here, we examined how cancer impacts mononuclear phagocytic APCs in a murine model of breast cancer. Tumors induced the expansion of monocyte-derived tumor-associated macrophages (TAMs) and the activation of type 1 dendritic cells (DC1s), both of which expressed and required the transcription factor interferon regulatory factor-8 (IRF8). Although DC1s mediated cytotoxic T lymphocyte (CTL) priming in tumor-draining lymph nodes, TAMs promoted CTL exhaustion in the tumor, and IRF8 was required for TAMs' ability to present cancer cell antigens. TAM-specific IRF8 deletion prevented exhaustion of cancer-cell-reactive CTLs and suppressed tumor growth. Tumors from patients with immune-infiltrated renal cell carcinoma had abundant TAMs that expressed IRF8 and were enriched for an IRF8 gene expression signature. Furthermore, the TAM-IRF8 signature co-segregated with CTL exhaustion signatures across multiple cancer types. Thus, CTL exhaustion is promoted by TAMs via IRF8.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Macrófagos Associados a Tumor , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Linfócitos T Citotóxicos , Células Dendríticas
3.
Nat Genet ; 54(7): 996-1012, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817971

RESUMO

Defects in pathways governing genomic fidelity have been linked to improved response to immune checkpoint blockade therapy (ICB). Pathogenic POLE/POLD1 mutations can cause hypermutation, yet how diverse mutations in POLE/POLD1 influence antitumor immunity following ICB is unclear. Here, we comprehensively determined the effect of POLE/POLD1 mutations in ICB and elucidated the mechanistic impact of these mutations on tumor immunity. Murine syngeneic tumors harboring Pole/Pold1 functional mutations displayed enhanced antitumor immunity and were sensitive to ICB. Patients with POLE/POLD1 mutated tumors harboring telltale mutational signatures respond better to ICB than patients harboring wild-type or signature-negative tumors. A mutant POLE/D1 function-associated signature-based model outperformed several traditional approaches for identifying POLE/POLD1 mutated patients that benefit from ICB. Strikingly, the spectrum of mutational signatures correlates with the biochemical features of neoantigens. Alterations that cause POLE/POLD1 function-associated signatures generate T cell receptor (TCR)-contact residues with increased hydrophobicity, potentially facilitating T cell recognition. Altogether, the functional landscapes of POLE/POLD1 mutations shape immunotherapy efficacy.


Assuntos
DNA Polimerase II/genética , Neoplasias , Proteínas de Ligação a Poli-ADP-Ribose/genética , Animais , DNA Polimerase III/genética , Humanos , Imunoterapia , Camundongos , Mutação , Neoplasias/genética
4.
Cancer Discov ; 12(10): 2308-2329, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35758895

RESUMO

It is poorly understood how the tumor immune microenvironment influences disease recurrence in localized clear-cell renal cell carcinoma (ccRCC). Here we performed whole-transcriptomic profiling of 236 tumors from patients assigned to the placebo-only arm of a randomized, adjuvant clinical trial for high-risk localized ccRCC. Unbiased pathway analysis identified myeloid-derived IL6 as a key mediator. Furthermore, a novel myeloid gene signature strongly correlated with disease recurrence and overall survival on uni- and multivariate analyses and is linked to TP53 inactivation across multiple data sets. Strikingly, effector T-cell gene signatures, infiltration patterns, and exhaustion markers were not associated with disease recurrence. Targeting immunosuppressive myeloid inflammation with an adenosine A2A receptor antagonist in a novel, immunocompetent, Tp53-inactivated mouse model significantly reduced metastatic development. Our findings suggest that myeloid inflammation promotes disease recurrence in ccRCC and is targetable as well as provide a potential biomarker-based framework for the design of future immuno-oncology trials in ccRCC. SIGNIFICANCE: Improved understanding of factors that influence metastatic development in localized ccRCC is greatly needed to aid accurate prediction of disease recurrence, clinical decision-making, and future adjuvant clinical trial design. Our analysis implicates intratumoral myeloid inflammation as a key driver of metastasis in patients and a novel immunocompetent mouse model. This article is highlighted in the In This Issue feature, p. 2221.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Antagonistas do Receptor A2 de Adenosina , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Inflamação , Interleucina-6 , Neoplasias Renais/patologia , Recidiva Local de Neoplasia/patologia , Prognóstico , Microambiente Tumoral/genética , Humanos
5.
Nat Biotechnol ; 40(4): 499-506, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34725502

RESUMO

Only a fraction of patients with cancer respond to immune checkpoint blockade (ICB) treatment, but current decision-making procedures have limited accuracy. In this study, we developed a machine learning model to predict ICB response by integrating genomic, molecular, demographic and clinical data from a comprehensively curated cohort (MSK-IMPACT) with 1,479 patients treated with ICB across 16 different cancer types. In a retrospective analysis, the model achieved high sensitivity and specificity in predicting clinical response to immunotherapy and predicted both overall survival and progression-free survival in the test data across different cancer types. Our model significantly outperformed predictions based on tumor mutational burden, which was recently approved by the U.S. Food and Drug Administration for this purpose1. Additionally, the model provides quantitative assessments of the model features that are most salient for the predictions. We anticipate that this approach will substantially improve clinical decision-making in immunotherapy and inform future interventions.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Biomarcadores Tumorais/genética , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Estudos Retrospectivos
6.
Mol Cancer Res ; 19(9): 1510-1521, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34039647

RESUMO

Immune checkpoint blockade (ICB) therapy has substantially improved the outcomes of patients with many types of cancers, including renal cell carcinoma (RCC). Initially studied as monotherapy, immunotherapy-based combination regimens have improved the clinical benefit achieved by ICB monotherapy and have revolutionized RCC treatment. While biomarkers like PD-L1 and tumor mutational burden (TMB) are FDA approved as biomarkers for ICB monotherapy, there are no known biomarkers for combination immunotherapies. Here, we describe the clinical outcomes and genomic determinants of response from a phase Ib/II clinical trial on patients with advanced RCC evaluating the efficacy of lenvatinib, a multi-kinase inhibitor mainly targeting VEGFR and FGFR plus pembrolizumab, an anti-PD1 immunotherapy. Concurrent treatment with lenvatinib and pembrolizumab resulted in an objective response rate of 79% (19/24) and tumor shrinkage in 96% (23/24) of patients. While tumor mutational burden (TMB) did not predict for clinical benefit, germline HLA-I diversity strongly impacted treatment efficacy. Specifically, HLA-I evolutionary divergence (HED), which measures the breadth of a patient's immunopeptidome, was associated with both improved clinical benefit and durability of response. Our results identify lenvatinib plus pembrolizumab as a highly active treatment strategy in RCC and reveal HLA-I diversity as a critical determinant of efficacy for this combination. HED also predicted better survival in a separate cohort of patients with RCC following therapy with anti-PD-1-based combination therapy. IMPLICATIONS: These findings have substantial implications for RCC therapy and for understanding immunogenetic mechanisms of efficacy and warrants further investigation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Variação Genética , Antígenos HLA/genética , Neoplasias Renais/patologia , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Feminino , Seguimentos , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Masculino , Pessoa de Meia-Idade , Compostos de Fenilureia/administração & dosagem , Prognóstico , Quinolinas/administração & dosagem , Taxa de Sobrevida
7.
Cancer Cell ; 39(5): 662-677.e6, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33861994

RESUMO

Clear cell renal cell carcinomas (ccRCCs) are highly immune infiltrated, but the effect of immune heterogeneity on clinical outcome in ccRCC has not been fully characterized. Here we perform paired single-cell RNA (scRNA) and T cell receptor (TCR) sequencing of 167,283 cells from multiple tumor regions, lymph node, normal kidney, and peripheral blood of two immune checkpoint blockade (ICB)-naïve and four ICB-treated patients to map the ccRCC immune landscape. We detect extensive heterogeneity within and between patients, with enrichment of CD8A+ tissue-resident T cells in a patient responsive to ICB and tumor-associated macrophages (TAMs) in a resistant patient. A TCR trajectory framework suggests distinct T cell differentiation pathways between patients responding and resistant to ICB. Finally, scRNA-derived signatures of tissue-resident T cells and TAMs are associated with response to ICB and targeted therapies across multiple independent cohorts. Our study establishes a multimodal interrogation of the cellular programs underlying therapeutic efficacy in ccRCC.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Humanos , Neoplasias Renais/imunologia , Ativação Linfocitária/genética , Receptor de Morte Celular Programada 1/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia
8.
Lancet Oncol ; 21(2): 283-293, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31870811

RESUMO

BACKGROUND: Obesity is associated with an increased risk of developing clear cell renal cell carcinoma (RCC) but, paradoxically, obesity is also associated with improved oncological outcomes in this cancer. Because the biological mechanisms underlying this paradoxical association are poorly understood, we aimed to identify transcriptomic differences in primary tumour and peritumoral adipose tissue between obese patients and those at a normal weight. METHODS: In this cohort study, we assessed data from five independent clinical cohorts of patients with clear cell RCC aged 18 years and older. Overweight patients were excluded from each cohort for our analysis. We assessed patients from the COMPARZ phase 3 clinical trial, a cohort from the Cancer Genome Atlas (TCGA), and a Memorial Sloan Kettering (MSK) observational immunotherapy cohort for their inclusion into our study. We assessed overall survival in obese patients (those with a body-mass index [BMI] ≥30 kg/m2) and in patients with a normal weight (BMI 18·5-24·9 kg/m2, as per WHO's BMI categories), defined as the time from treatment initiation (in the COMPARZ and MSK immunotherapy cohorts) or surgery (in the TCGA cohort) to the date of any-cause death or of censoring on the day of the last follow-up. We also evaluated and validated transcriptomic differences in the primary tumours of obese patients compared with those of a normal weight. We compared gene-expression differences in peritumoral adipose tissue and tumour tissue in an additional, prospectively collected cohort of patients with non-metastatic clear cell RCC (the MSK peritumoral adipose tissue cohort). We analysed differences in gene expression between obese patients and those at a normal weight in the COMPARZ, TCGA, and peritumoral adipose tissue cohorts. We also assessed the tumour immune microenvironment in a prospective cohort of patients who had nephrectomy for localised RCC at MSK. FINDINGS: Of the 453 patients in the COMPARZ trial, 375 (83%) patients had available microarray data, pretreatment BMI measurements, and overall survival data for analyses, and we excluded 119 (26%) overweight patients, leaving a final cohort of 256 (68%) patients from this study for our analyses. From 332 patients in the TCGA cohort, we evaluated clinical and demographic data from 152 (46%) patients with advanced (ie, stages III and IV) clear cell RCC treated by nephrectomy; after exclusion of 59 (39%) overweight patients, our final cohort consisted of 93 (61%) patients. After exclusion of 74 (36%) overweight patients from the initial MSK immunotherapy study population of 203 participants, our final cohort for overall survival analysis comprised 129 (64%) participants. We found that overall survival was longer in obese patients than in those with normal weight in the TCGA cohort, after adjustment for stage or grade (adjusted HR 0·41, 95% CI 0·22-0·75), and in the COMPARZ clinical trial after adjustment for International Metastatic RCC Database (IMDC) risk score (0·68, 0·48-0·96). In the MSK immunotherapy cohort, the inverse association of BMI with mortality (HR 0·54, 95% CI 0·31-0·95) was not significant after adjustment for IMDC risk score (adjusted HR 0·72, 95% CI 0·40-1·30). Tumours of obese patients showed higher angiogenic scores on gene-set enrichment analysis-derived hallmark gene set angiogenesis signatures than did those of patients at a normal weight, but the degree of immune cell infiltration did not differ by BMI. We found increased peritumoral adipose tissue inflammation in obese patients relative to those at a normal weight, especially in peritumoral fat near the tumour. INTERPRETATION: We found aspects of the tumour microenvironment that vary by BMI in the tumour and peritumoral adipose tissue, which might contribute to the apparent survival advantage in obese patients with clear cell RCC compared with patients at a normal weight. The complex interplay between the clear cell RCC tumour and peritumoral adipose tissue microenvironment might have clinical relevance and warrants further investigation. FUNDING: Ruth L Kirschstein Research Service Award, American Society of Clinical Oncology Young Investigator Award, MSK's Ludwig Center, Weiss Family Kidney Research Fund, Novartis, The Sidney Kimmel Center for Prostate and Urologic Cancers, and the National Institutes of Health (National Cancer Institute) Cancer Center Support Grant.


Assuntos
Tecido Adiposo/metabolismo , Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Obesidade/genética , Transcriptoma , Idoso , Índice de Massa Corporal , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/terapia , Ensaios Clínicos Fase III como Assunto , Bases de Dados Factuais , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Renais/imunologia , Neoplasias Renais/mortalidade , Neoplasias Renais/terapia , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica , Obesidade/imunologia , Obesidade/mortalidade , Estudos Observacionais como Assunto , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento , Microambiente Tumoral
9.
Cancer Discov ; 9(10): 1349-1357, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31527133

RESUMO

Renal cell carcinoma stands out as one of the most immune-infiltrated tumors in pan-cancer comparisons. Features of the tumor microenvironment heavily affect disease biology and may affect responses to systemic therapy. With evolving frontline options in the metastatic setting, several immune checkpoint blockade regimens have emerged as efficacious, and there is growing interest in characterizing features of tumor biology that can reproducibly prognosticate patients and/or predict the likelihood of their deriving therapeutic benefit. Herein, we review pertinent characteristics of the tumor microenvironment with dedicated attention to candidate prognostic and predictive signatures as well as possible targets for future drug development. SIGNIFICANCE: Tumor microenvironment features broadly characterizing angiogenesis and inflammatory signatures have shown striking differences in response to immune checkpoint blockade and antiangiogenic agents. Integration of stromal and immune biomarkers may hence produce predictive and prognostic signatures to guide management with existing regimens as well as future drug development.


Assuntos
Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Microambiente Tumoral , Animais , Biomarcadores Tumorais , Carcinoma de Células Renais/etiologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/terapia , Terapia Combinada , Humanos , Neoplasias Renais/etiologia , Neoplasias Renais/metabolismo , Neoplasias Renais/terapia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Terapia de Alvo Molecular , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia
10.
Cancer Discov ; 9(4): 510-525, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30622105

RESUMO

Metastasis remains the main reason for renal cell carcinoma (RCC)-associated mortality. Tyrosine kinase inhibitors (TKI) impart clinical benefit for most patients with RCC, but the determinants of response are poorly understood. We report an integrated genomic and transcriptomic analysis of patients with metastatic clear cell RCC (ccRCC) treated with TKI therapy and identify predictors of response. Patients in the COMPARZ phase III trial received first-line sunitinib or pazopanib with comparable efficacy. RNA-based analyses revealed four distinct molecular subgroups associated with response and survival. Characterization of these subgroups identified mutation profiles, angiogenesis, and macrophage infiltration programs to be powerful predictors of outcome with TKI therapy. Notably, predictors differed by the type of TKI received. Our study emphasizes the clinical significance of angiogenesis and immune tumor microenvironment and suggests that the critical effects its various aspects have on TKI efficacy vary by agent. This has broad implications for optimizing precision treatment of RCC. SIGNIFICANCE: The determinants of response to TKI therapy in metastatic ccRCC remain unknown. Our study demonstrates that key angiogenic and immune profiles of the tumor microenvironment may affect TKI response. These findings have the potential to inform treatment personalization in patients with RCC.This article is highlighted in the In This Issue feature, p. 453.


Assuntos
Carcinoma de Células Renais/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Renais/genética , Feminino , Humanos , Masculino , Microambiente Tumoral
11.
Cancer Res ; 79(7): 1480-1492, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30674531

RESUMO

A combination therapy approach is required to improve tumor immune infiltration and patient response to immune checkpoint inhibitors that target negative regulatory receptors. Galectin-3 is a ß-galactoside-binding lectin that is highly expressed within the tumor microenvironment of aggressive cancers and whose expression correlates with poor survival particularly in patients with non-small cell lung cancer (NSCLC). To examine the role of galectin-3 inhibition in NSCLC, we tested the effects of galectin-3 depletion using genetic and pharmacologic approaches on syngeneic mouse lung adenocarcinoma and human lung adenocarcinoma xenografts. Galectin-3-/- mice developed significantly smaller and fewer tumors and metastases than syngeneic C57/Bl6 wild-type mice. Macrophage ablation retarded tumor growth, whereas reconstitution with galectin-3-positive bone marrow restored tumor growth in galectin-3-/- mice, indicating that macrophages were a major driver of the antitumor response. Oral administration of a novel small molecule galectin-3 inhibitor GB1107 reduced human and mouse lung adenocarcinoma growth and blocked metastasis in the syngeneic model. Treatment with GB1107 increased tumor M1 macrophage polarization and CD8+ T-cell infiltration. Moreover, GB1107 potentiated the effects of a PD-L1 immune checkpoint inhibitor to increase expression of cytotoxic (IFNγ, granzyme B, perforin-1, Fas ligand) and apoptotic (cleaved caspase-3) effector molecules. In summary, galectin-3 is an important regulator of lung adenocarcinoma progression. The novel galectin-3 inhibitor presented could provide an effective, nontoxic monotherapy or be used in combination with immune checkpoint inhibitors to boost immune infiltration and responses in lung adenocarcinoma and potentially other aggressive cancers. SIGNIFICANCE: A novel and orally active galectin-3 antagonist inhibits lung adenocarcinoma growth and metastasis and augments response to PD-L1 blockade.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/7/1480/F1.large.jpg.


Assuntos
Adenocarcinoma de Pulmão/patologia , Antígeno B7-H1/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Galectina 3/antagonistas & inibidores , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/metabolismo , Administração Oral , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Galectina 3/genética , Galectina 3/fisiologia , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA