Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Emerg Microbes Infect ; 12(2): 2270068, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37842795

RESUMO

In October 2020, a new lineage of a clade 2.3.4.4b HPAI virus of the H5 subtype emerged in Europe, resulting in the largest global outbreak of HPAI to date, with unprecedented mortality in wild birds and poultry. The virus appears to have become enzootic in birds, continuously yielding novel HPAI virus variants. The recently increased abundance of infected birds worldwide increases the probability of bird-mammal contact, particularly in wild carnivores. Here, we performed molecular and serological screening of over 500 dead wild carnivores and sequencing of RNA positive materials. We show virological evidence for HPAI H5 virus infection in 0.8%, 1.4%, and 9.9% of animals tested in 2020, 2021, and 2022 respectively, with the highest proportion of positives in foxes, polecats and stone martens. We obtained near full genomes of 7 viruses and detected PB2 amino acid substitutions known to play a role in mammalian adaptation in three sequences. Infections were also found in without neurological signs or mortality. Serological evidence for infection was detected in 20% of the study population. These findings suggests that a high proportion of wild carnivores is infected but undetected in current surveillance programmes. We recommend increased surveillance in susceptible mammals, irrespective of neurological signs or encephalitis.


Assuntos
Influenza Aviária , Humanos , Animais , Países Baixos , Animais Selvagens , Aves , Surtos de Doenças/veterinária , Anticorpos , Filogenia , Mamíferos
2.
Transbound Emerg Dis ; 69(6): 3360-3370, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029486

RESUMO

Avian metapneumovirus (AMPV) represents a long-term threat to the poultry industry due to its etiological role in the induction of acute respiratory disease and/or egg drop syndrome in domestic turkeys, chickens, and ducks. Although this disease is commonly referred to as turkey rhinotracheitis, the host range of AMPV encompasses many avian species. We have screened 1323 oropharyngeal- and cloacal swab samples obtained from wild mallards in the Netherlands from 2017 to 2019 by RT-PCR using a degenerate primer pair to detect all members of the Paramyxoviridae and Pneumoviridae or an avian metapneumovirus subtype C (AMPV-C)-specific RT-qPCR assay. We identified a total of seven cases of AMPV-C infections in wild, healthy mallards (Anas platyrhynchos), of which two AMPV-C positive samples were further processed using next-generation sequencing. Phylogenetic analysis of the two complete genomes showed that the newly identified AMPV-C strains share closest sequence identity (97%) with Eurasian lineage AMPV-C strains identified in Muscovy ducks in China that presented with severe respiratory disease and egg production loss in 2011. Further analysis of G protein amino acid sequences showed a high degree of variability between the newly identified AMPV-C variants. PONDR scoring of the G protein has revealed the ectodomain of AMPV-C to be partitioned into a long intrinsically disordered and short ordered region, giving insights into AMPV G protein structural biology. In summary, we provide the first report of full-length AMPV-C genome sequences derived from wild birds in Europe. This emphasizes the need for further surveillance efforts to better characterize the host range, epidemiologic distribution, and pathogenicity of AMPV-C to determine the risk posed by cross-species jumps from wildfowl to domesticated avian species.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Doenças das Aves Domésticas , Animais , Metapneumovirus/genética , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/veterinária , Patos , Países Baixos/epidemiologia , Filogenia , Galinhas , Doenças das Aves Domésticas/epidemiologia , Anticorpos Antivirais/metabolismo , Perus
3.
J Zoo Wildl Med ; 53(1): 41-49, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35339148

RESUMO

Since the emergence of the Goose/Guangdong H5 lineage in 1996 and spillover of highly pathogenic avian influenza (HPAI) from poultry to wild birds, outbreaks have become increasingly frequent in wild birds. The latest outbreak in the Netherlands occurred in the fall-winter of 2020-2021 and was linked to incursions of HPAI H5N8 virus. During the larger national outbreak, wild birds in rehabilitation center "Vogelklas Karel Schot (VKS)" in Rotterdam presented with clinical signs compatible with HPAI, including head shaking, torticollis, and abnormal gait. During an epidemiologic investigation at VKS, water samples from the pools in the enclosures and oropharyngeal and cloacal swabs from 128 birds of different species were analyzed for the presence of H5N8 virus. Forty-five birds and the pool water tested positive for the virus. The outbreak at VKS was likely introduced by one or more infected geese (Anser anser, Anser anser domesticus, Branta leucopsis), after which the virus spread via pool water and with the relocation of infected birds within the center. In principle, such outbreaks are preventable. Recent updates about HPAI to provide guidance to help avoid future incursions of HPAI into wildlife rescue centers are reported.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Animais , Animais Selvagens , Surtos de Doenças/veterinária , Influenza Aviária/epidemiologia , Países Baixos/epidemiologia
4.
Virus Evol ; 5(1): vez004, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31024736

RESUMO

Highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4 viruses were first introduced into Europe in late 2014 and re-introduced in late 2016, following detections in Asia and Russia. In contrast to the 2014-15 H5N8 wave, there was substantial local virus amplification in wild birds in Europe in 2016-17 and associated wild bird mortality, with evidence for occasional gene exchange with low pathogenic avian influenza (LPAI) viruses. Since December 2017, several European countries have again reported events or outbreaks with HPAI H5N6 reassortant viruses in both wild birds and poultry, respectively. Previous phylogenetic studies have shown that the two earliest incursions of HPAI H5N8 viruses originated in Southeast Asia and subsequently spread to Europe. In contrast, this study indicates that recent HPAI H5N6 viruses evolved from the H5N8 2016-17 viruses during 2017 by reassortment of a European HPAI H5N8 virus and wild host reservoir LPAI viruses. The genetic and phenotypic differences between these outbreaks and the continuing detections of HPAI viruses in Europe are a cause of concern for both animal and human health. The current co-circulation of potentially zoonotic HPAI and LPAI virus strains in Asia warrants the determination of drivers responsible for the global spread of Asian lineage viruses and the potential threat they pose to public health.

5.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769347

RESUMO

Wild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The mechanisms that drive AIV evolution are complex at sites where various duck and gull species from multiple flyways breed, winter, or stage. The Republic of Georgia is located at the intersection of three migratory flyways: the Central Asian flyway, the East Africa/West Asia flyway, and the Black Sea/Mediterranean flyway. For six complete study years (2010 to 2016), we collected AIV samples from various duck and gull species that breed, migrate, and overwinter in Georgia. We found a substantial subtype diversity of viruses that varied in prevalence from year to year. Low-pathogenic AIV (LPAIV) subtypes included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, and H16N3, and two highly pathogenic AIVs (HPAIVs) belonging to clade 2.3.4.4, H5N5 and H5N8, were found. Whole-genome phylogenetic trees showed significant host species lineage restriction for nearly all gene segments and significant differences in observed reassortment rates, as defined by quantification of phylogenetic incongruence, and in nucleotide sequence diversity for LPAIVs among different host species. Hemagglutinin clade 2.3.4.4 H5N8 viruses, which circulated in Eurasia during 2014 and 2015, did not reassort, but analysis after their subsequent dissemination during 2016 and 2017 revealed reassortment in all gene segments except NP and NS. Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other regions, with maintenance of local AIVs in Georgia, whereas other lineages showed considerable genetic interrelationships with viruses circulating in other parts of Eurasia and Africa, despite relative undersampling in the area.IMPORTANCE Waterbirds (e.g., gulls and ducks) are natural reservoirs of avian influenza viruses (AIVs) and have been shown to mediate the dispersal of AIVs at intercontinental scales during seasonal migration. The segmented genome of influenza viruses enables viral RNA from different lineages to mix or reassort when two viruses infect the same host. Such reassortant viruses have been identified in most major human influenza pandemics and several poultry outbreaks. Despite their importance, we have only recently begun to understand AIV evolution and reassortment in their natural host reservoirs. This comprehensive study illustrates AIV evolutionary dynamics within a multihost ecosystem at a stopover site where three major migratory flyways intersect. Our analysis of this ecosystem over a 6-year period provides a snapshot of how these viruses are linked to global AIV populations. Understanding the evolution of AIVs in the natural host is imperative to mitigating both the risk of incursion into domestic poultry and the potential risk to mammalian hosts, including humans.


Assuntos
Aves/virologia , Ecossistema , Evolução Molecular , Genoma Viral , Vírus da Influenza A/fisiologia , Influenza Aviária/genética , Filogenia , Animais
6.
Euro Surveill ; 23(4)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29382414

RESUMO

IntroductionHighly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in south-east Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild birds in multiple European countries. Methods: Here we report on the detection of HPAI H5N8 virus in 57 wild birds of 12 species sampled during active (32/5,167) and passive (25/36) surveillance activities, i.e. in healthy and dead animals respectively, in the Netherlands between 8 November 2016 and 31 March 2017. Moreover, we further investigate the experimental approach of wild bird serology as a contributing tool in HPAI outbreak investigations. Results: In contrast to the first H5N8 wave, local virus amplification with associated wild bird mortality has occurred in the Netherlands in 2016/17, with evidence for occasional gene exchange with low pathogenic avian influenza (LPAI) viruses. Discussion: These apparent differences between outbreaks and the continuing detections of HPAI viruses in Europe are a cause of concern. With the current circulation of zoonotic HPAI and LPAI virus strains in Asia, increased understanding of the drivers responsible for the global spread of Asian poultry viruses via wild birds is needed.


Assuntos
Animais Selvagens/virologia , Aves/virologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8/isolamento & purificação , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/mortalidade , Animais , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/patologia , Influenza Aviária/virologia , Países Baixos/epidemiologia , RNA Viral/genética , Vigilância de Evento Sentinela , Análise de Sequência de DNA
7.
PLoS One ; 12(3): e0173470, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278281

RESUMO

Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and subsequently virus transmission between poultry holdings and to humans. Based on spatial, temporal and phylogenetic analyses of data generated as part of intense and large-scale influenza surveillance programs in wild birds and poultry in the Netherlands from 2006 to 2011, we demonstrate that LPAIV subtype distribution differed between wild birds and poultry, suggestive of host-range restrictions. LPAIV isolated from Dutch poultry were genetically most closely related to LPAIV isolated from wild birds in the Netherlands or occasionally elsewhere in Western Europe. However, a relatively long time interval was observed between the isolations of related viruses from wild birds and poultry. Spatial analyses provided evidence for mallards (Anas platyrhynchos) being more abundant near primary infected poultry farms. Detailed year-round investigation of virus prevalence and wild bird species distribution and behavior near poultry farms should be used to improve risk assessment in relation to avian influenza virus introduction and retarget avian influenza surveillance programs.


Assuntos
Animais Selvagens/virologia , Monitoramento Epidemiológico/veterinária , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Aves Domésticas/virologia , Animais , Meio Ambiente , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/enzimologia , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Neuraminidase/genética , Fatores de Risco
8.
Euro Surveill ; 21(38)2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27684783

RESUMO

In 2014, H5N8 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage emerged in poultry and wild birds in Asia, Europe and North America. Here, wild birds were extensively investigated in the Netherlands for HPAI H5N8 virus (real-time polymerase chain reaction targeting the matrix and H5 gene) and antibody detection (haemagglutination inhibition and virus neutralisation assays) before, during and after the first virus detection in Europe in late 2014. Between 21 February 2015 and 31 January 2016, 7,337 bird samples were tested for the virus. One HPAI H5N8 virus-infected Eurasian wigeon (Anas penelope) sampled on 25 February 2015 was detected. Serological assays were performed on 1,443 samples, including 149 collected between 2007 and 2013, 945 between 14 November 2014 and 13 May 2015, and 349 between 1 September and 31 December 2015. Antibodies specific for HPAI H5 clade 2.3.4.4 were absent in wild bird sera obtained before 2014 and present in sera collected during and after the HPAI H5N8 emergence in Europe, with antibody incidence declining after the 2014/15 winter. Our results indicate that the HPAI H5N8 virus has not continued to circulate extensively in wild bird populations since the 2014/15 winter and that independent maintenance of the virus in these populations appears unlikely.


Assuntos
Animais Selvagens/virologia , Aves/virologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/virologia , Animais , Testes de Inibição da Hemaglutinação , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/sangue , Países Baixos/epidemiologia , Testes de Neutralização , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Vigilância de Evento Sentinela , Análise de Sequência de DNA
9.
PLoS One ; 9(11): e112366, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25391154

RESUMO

Migratory and resident hosts have been hypothesized to fulfil distinct roles in infectious disease dynamics. However, the contribution of resident and migratory hosts to wildlife infectious disease epidemiology, including that of low pathogenic avian influenza virus (LPAIV) in wild birds, has largely remained unstudied. During an autumn H3 LPAIV epizootic in free-living mallards (Anas platyrhynchos) - a partially migratory species - we identified resident and migratory host populations using stable hydrogen isotope analysis of flight feathers. We investigated the role of migratory and resident hosts separately in the introduction and maintenance of H3 LPAIV during the epizootic. To test this we analysed (i) H3 virus kinship, (ii) temporal patterns in H3 virus prevalence and shedding and (iii) H3-specific antibody prevalence in relation to host migratory strategy. We demonstrate that the H3 LPAIV strain causing the epizootic most likely originated from a single introduction, followed by local clonal expansion. The H3 LPAIV strain was genetically unrelated to H3 LPAIV detected both before and after the epizootic at the study site. During the LPAIV epizootic, migratory mallards were more often infected with H3 LPAIV than residents. Low titres of H3-specific antibodies were detected in only a few residents and migrants. Our results suggest that in this LPAIV epizootic, a single H3 virus was present in resident mallards prior to arrival of migratory mallards followed by a period of virus amplification, importantly associated with the influx of migratory mallards. Thus migrants are suggested to act as local amplifiers rather than the often suggested role as vectors importing novel strains from afar. Our study exemplifies that a multifaceted interdisciplinary approach offers promising opportunities to elucidate the role of migratory and resident hosts in infectious disease dynamics in wildlife.


Assuntos
Anseriformes/virologia , Reservatórios de Doenças/virologia , Influenza Aviária/epidemiologia , Zoonoses/epidemiologia , Migração Animal , Animais , Anticorpos Antivirais/sangue , Austrália/epidemiologia , Deutério/metabolismo , Plumas/química , Plumas/virologia , Feminino , Vírus da Influenza A/fisiologia , Influenza Aviária/imunologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Masculino , Estações do Ano , Eliminação de Partículas Virais/fisiologia , Zoonoses/imunologia , Zoonoses/transmissão , Zoonoses/virologia
10.
Emerg Infect Dis ; 20(1): 138-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24377955

RESUMO

We sampled 7,511 black-headed gulls for influenza virus in the Netherlands during 2006-2010 and found that subtypes H13 and H16 caused annual epidemics in fledglings on colony sites. Our findings validate targeted surveillance of wild waterbirds and clarify underlying factors for influenza virus emergence in other species.


Assuntos
Charadriiformes/virologia , Vírus da Influenza A/classificação , Influenza Aviária/epidemiologia , Animais , Feminino , Masculino , Países Baixos/epidemiologia , Prevalência , Vigilância em Saúde Pública , Estações do Ano , Sorotipagem
11.
PLoS One ; 8(3): e58534, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516501

RESUMO

The Caucasus, at the border of Europe and Asia, is important for migration and over-wintering of wild waterbirds. Three flyways, the Central Asian, East Africa-West Asia, and Mediterranean/Black Sea flyways, converge in the Caucasus region. Thus, the Caucasus region might act as a migratory bridge for influenza virus transmission when birds aggregate in high concentrations in the post-breeding, migrating and overwintering periods. Since August 2009, we have established a surveillance network for influenza viruses in wild birds, using five sample areas geographically spread throughout suitable habitats in both eastern and western Georgia. We took paired tracheal and cloacal swabs and fresh feces samples. We collected 8343 swabs from 76 species belonging to 17 families in 11 orders of birds, of which 84 were real-time RT-PCR positive for avian influenza virus (AIV). No highly pathogenic AIV (HPAIV) H5 or H7 viruses were detected. The overall AIV prevalence was 1.6%. We observed peak prevalence in large gulls during the autumn migration (5.3-9.8%), but peak prevalence in Black-headed Gulls in spring (4.2-13%). In ducks, we observed increased AIV prevalence during the autumn post-moult aggregations and migration stop-over period (6.3%) but at lower levels to those observed in other more northerly post-moult areas in Eurasia. We observed another prevalence peak in the overwintering period (0.14-5.9%). Serological and virological monitoring of a breeding colony of Armenian Gulls showed that adult birds were seropositive on arrival at the breeding colony, but juveniles remained serologically and virologically negative for AIV throughout their time on the breeding grounds, in contrast to gull AIV data from other geographic regions. We show that close phylogenetic relatives of viruses isolated in Georgia are sourced from a wide geographic area throughout Western and Central Eurasia, and from areas that are represented by multiple different flyways, likely linking different host sub-populations.


Assuntos
Aves/virologia , Monitoramento Epidemiológico/veterinária , Influenza Aviária/epidemiologia , Animais , Anticorpos Antivirais/sangue , República da Geórgia/epidemiologia , Vírus da Influenza A/classificação , Vírus da Influenza A/imunologia , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/fisiologia , Funções Verossimilhança , Estudos Longitudinais , Filogenia
12.
Med Care ; 50 Suppl: S2-10, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23064272

RESUMO

OBJECTIVE: To develop and evaluate survey questions that assess processes of care relevant to Patient-Centered Medical Homes (PCMHs). RESEARCH DESIGN: We convened expert panels, reviewed evidence on effective care practices and existing surveys, elicited broad public input, and conducted cognitive interviews and a field test to develop items relevant to PCMHs that could be added to the Consumer Assessment of Healthcare Providers and Systems (CAHPS®) Clinician & Group (CG-CAHPS) 1.0 Survey. Surveys were tested using a 2-contact mail protocol in 10 adults and 33 pediatric practices (both private and community health centers) in Massachusetts. A total of 4875 completed surveys were received (overall response rate of 25%). ANALYSES: We calculated the rate of valid responses for each item. We conducted exploratory factor analyses and estimated item-to-total correlations, individual and site-level reliability, and correlations among proposed multi-item composites. RESULTS: Ten items in 4 new domains (Comprehensiveness, Information, Self-Management Support, and Shared Decision-Making) and 4 items in 2 existing domains (Access and Coordination of Care) were selected to be supplemental items to be used in conjunction with the adult CG-CAHPS 1.0 Survey. For the child version, 4 items in each of 2 new domains (Information and Self-Management Support) and 5 items in existing domains (Access, Comprehensiveness-Prevention, Coordination of Care) were selected. CONCLUSIONS: This study provides support for the reliability and validity of new items to supplement the CG-CAHPS 1.0 Survey to assess aspects of primary care that are important attributes of PCMHs.


Assuntos
Comportamento do Consumidor , Pesquisas sobre Atenção à Saúde/métodos , Assistência Centrada no Paciente/normas , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Centros Comunitários de Saúde/normas , Centros Comunitários de Saúde/estatística & dados numéricos , Comportamento do Consumidor/estatística & dados numéricos , Análise Fatorial , Feminino , Grupos Focais , Pessoal de Saúde/normas , Pessoal de Saúde/estatística & dados numéricos , Humanos , Lactente , Entrevistas como Assunto , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente/estatística & dados numéricos , Assistência Centrada no Paciente/estatística & dados numéricos , Atenção Primária à Saúde/normas , Atenção Primária à Saúde/estatística & dados numéricos , Prática Privada/normas , Prática Privada/estatística & dados numéricos , Reprodutibilidade dos Testes , Inquéritos e Questionários/normas , Estados Unidos , Adulto Jovem
13.
PLoS One ; 7(6): e38256, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761671

RESUMO

Avian influenza virus (AIV) surveillance studies in wild birds are usually conducted in rural areas and nature reserves. Less is known of avian influenza virus prevalence in wild birds located in densely populated urban areas, while these birds are more likely to be in close contact with humans. Influenza virus prevalence was investigated in 6059 wild birds sampled in cities in the Netherlands between 2006 and 2009, and compared with parallel AIV surveillance data from low urbanized areas in the Netherlands. Viral prevalence varied with the level of urbanization, with highest prevalence in low urbanized areas. Within cities virus was detected in 0.5% of birds, while seroprevalence exceeded 50%. Ring recoveries of urban wild birds sampled for virus detection demonstrated that most birds were sighted within the same city, while few were sighted in other cities or migrated up to 2659 km away from the sample location in the Netherlands. Here we show that urban birds were infected with AIVs and that urban birds were not separated completely from populations of long-distance migrants. The latter suggests that wild birds in cities may play a role in the introduction of AIVs into cities. Thus, urban bird populations should not be excluded as a human-animal interface for influenza viruses.


Assuntos
Migração Animal , Animais Selvagens/virologia , Aves/virologia , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Animais , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/diagnóstico , Influenza Aviária/epidemiologia , Países Baixos/epidemiologia , Estudos Soroepidemiológicos , Reforma Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA