Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biologicals ; 83: 101685, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37276750

RESUMO

African swine fever (ASF) is a devastating disease that is currently producing a panzootic significantly impacting the swine industry worldwide. One of the major challenges for advancing the development of ASF vaccines has been the absence of international standards for ASF vaccine purity, potency, safety, and efficacy. To date, the most effective experimental vaccines have been live attenuated strains of viruses. Most of these promising vaccine candidates have been developed by deleting virus genes involved in the process of viral pathogenesis and disease production. This approach requires genomic modification of a parental virus field strain through a process of homologous recombination followed by purification of the recombinant attenuated virus. In this scenario, it is critical to confirm the absence of any parental virulent virus in the final virus stock used for vaccine production. We present here a protocol to establish the purity of virus stock using the live attenuated vaccine candidates ASFV-G-ΔMGF, ASFV-G-Δ9 GLΔUK and ASFV-G-ΔI177L. Procedures described here includes inoculation in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates. This protocol is proposed as a model to ensure that master seed virus stock used for vaccine production does not contain residual parental virulent virus. Procedures described here includes a passage in susceptible pigs followed by the assessment of the obtained material by differential qPCRs that allows the identification of vaccine virus from ASFV field isolates.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas , Virulência , Proteínas Virais/genética , Vacinas Sintéticas
2.
Viruses ; 15(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851779

RESUMO

African swine fever virus (ASFV) is the etiological agent of an economically important disease of swine currently affecting large areas of Africa, Eurasia and the Caribbean. ASFV has a complex structure harboring a large dsDNA genome which encodes for more than 160 proteins. One of the proteins, E66L, has recently been involved in arresting gene transcription in the infected host cell. Here, we investigate the role of E66L in the processes of virus replication in swine macrophages and disease production in domestic swine. A recombinant ASFV was developed (ASFV-G-∆E66L), from the virulent parental Georgia 2010 isolate (ASFV-G), harboring the deletion of the E66L gene as a tool to assess the role of the gene. ASFV-G-∆E66L showed that the E66L gene is non-essential for ASFV replication in primary swine macrophages when compared with the parental highly virulent field isolate ASFV-G. Additionally, domestic pigs infected with ASFV-G-∆E66L developed a clinical disease undistinguishable from that produced by ASFV-G. Therefore, E66L is not involved in virus replication or virulence in domestic pigs.


Assuntos
Vírus da Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Virulência , Sus scrofa , Replicação Viral , África
3.
Viruses ; 14(8)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-36016304

RESUMO

African swine fever virus (ASFV) causes a lethal disease (ASF) in domestic pigs, African swine fever (ASF). ASF is currently producing a pandemic affecting pig production across Eurasia, leading to a shortage of food accessibility. ASFV is structurally complex, harboring a large genome encoding over 150 genes. One of them, EP296R, has been shown to encode for an endonuclease that is necessary for the efficient replication of the virus in swine macrophages, the natural ASFV target cell. Here, we report the development of a recombinant virus, ASFV-G-∆EP296R, harboring the deletion of the EP296R gene from the genome of the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). The recombinant ASFV-G-∆EP296R replicates in primary swine macrophages with similar kinetics as the parental virus ASFV-G. Pigs experimentally infected by the intramuscular route with 102 HAD50 show a slightly protracted, although lethal, presentation of the disease when compared to that of animals inoculated with parental ASFV-G. Viremia titers in the ASFV-G-∆EP296R-infected animals closely followed the kinetics of presentation of clinical disease. Results presented here demonstrate that ASFV-G-∆EP296R is not essential for the processes of ASFV replication in swine macrophages, nor is it radically involved in the process of virus replication or disease production in domestic pigs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Deleção de Genes , Sus scrofa , Suínos , Virulência/genética , Replicação Viral
4.
Viruses ; 14(7)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35891389

RESUMO

African swine fever (ASF) is a frequently lethal disease of domestic and wild swine currently producing a pandemic affecting pig production in Eurasia. The causative agent, ASF virus (ASFV) is a structurally complex virus with a large genome harboring over 150 genes. One of them, E165R, encodes for a protein belonging to the dUTPase family. The fine structure of the purified protein has been recently analyzed and its dUTPase activity tested. In addition, it has been reported that a BA71 mutant virus, adapted to growth in Vero cells, lacking the E165R gene presented a drastic decreased replication in swine macrophages, its natural target cell. Herein, we report the development of a recombinant virus, ASFV-G-∆E165R, harboring the deletion of the E165R gene from the genome of the highly virulent field isolate ASFV Georgia 2010 (ASFV-G). Interestingly, ASFV-G-∆E165R replicates in primary swine macrophage cultures as efficiently as the parental virus ASFV-G. In addition, ASFV-G-∆E165R also replicates in experimentally inoculated domestic pigs with equal efficacy as ASFV-G and produced a lethal disease almost indistinguishable from that induced by the parental virus. Therefore, results presented here clearly demonstrated that E165R gene is not essential or important for ASFV replication in swine macrophages nor disease production in domestic pigs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Chlorocebus aethiops , Deleção de Genes , Pirofosfatases , Sus scrofa , Suínos , Células Vero , Virulência/genética , Replicação Viral
5.
Viruses ; 14(5)2022 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-35632853

RESUMO

African swine fever virus (ASFV) is the etiological agent of a frequently lethal disease, ASF, affecting domestic and wild swine. Currently, ASF is causing a pandemic affecting pig production in Eurasia. There are no vaccines available, and therefore control of the disease is based on culling infected animals. We report here that deletion of the ASFV gene A104R, a virus histone-like protein, from the genome of the highly virulent ASFV-Georgia2010 (ASFV-G) strain induces a clear decrease in virus virulence when experimentally inoculated in domestic swine. A recombinant virus lacking the A104R gene, ASFV-G-∆A104R, was developed to assess the role of the A104R gene in disease production in swine. Domestic pigs were intramuscularly inoculated with 102 HAD50 of ASFV-G-∆A104R, and compared with animals that received a similar dose of virulent ASFV-G. While all ASFV-G inoculated animals developed a fatal form of the disease, animals receiving ASFV-G-∆A104R survived the challenge, remaining healthy during the 28-day observational period, with the exception of only one showing a protracted but fatal form of the disease. ASFV-G-∆A104R surviving animals presented protracted viremias with reduced virus titers when compared with those found in animals inoculated with ASFV-G, and all of them developed a strong virus-specific antibody response. This is the first report demonstrating that the A104R gene is involved in ASFV virulence in domestic swine, suggesting that A104R deletion may be used to increase the safety profile of currently experimental vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vírus não Classificados , Vírus da Febre Suína Africana/fisiologia , Animais , Georgia , Histonas , Sus scrofa , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
6.
Front Vet Sci ; 8: 768869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778441

RESUMO

Currently, African swine fever virus (ASFV) represents one of the most important economic threats for the global pork industry. Recently, significant advances have been made in the development of potential vaccine candidates to protect pigs against this virus. We have previously developed attenuated vaccine candidates by deleting critical viral genes associated with virulence. Here, we present the development of the accompanying genetic tests to discriminate between infected and vaccinated animals (DIVA), a necessity during an ASFV vaccination campaign. We describe here the development of three independent real-time polymerase chain reaction (qPCR) assays that detect the presence of MGF-360-12L, UK, and I177L genes, which were previously deleted from the highly virulent Georgia strain of ASFV to produce the three recombinant live attenuated vaccine candidates. When compared with the diagnostic reference qPCR that detects the p72 gene, all assays demonstrated comparable levels of sensitivity, specificity, and efficiency of amplification to detect presence/absence of the ASFV Georgia 2007/1 strain (prototype virus of the Eurasian lineage) from a panel of blood samples from naïve, vaccinated, and infected pigs. Collectively, the results of this study demonstrate the potential of these real-time PCR assays to be used as genetic DIVA tests, supporting vaccination campaigns associated with the use of ASFV-ΔMGF, ASFV-G-Δ9GL/ΔUK, and ASFV-ΔI177L or cell culture adapted ASFV-ΔI177LΔLVR live attenuated vaccines in the field.

7.
Viruses ; 13(6)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073222

RESUMO

African swine fever virus (ASFV) causes a devastating disease of swine that has caused outbreaks in Central Europe since 2007, spreading into Asia in 2018. ASFV is a large, structurally complex virus with a large dsDNA genome encoding for more than 160 genes, most of them still uncharacterized. p22, encoded by the ASFV gene KP177R, is an early transcribed, structural virus protein located in the ASFV particle. Although its exact function is unknown, p22 has recently been identified as an interacting partner of several host proteins. Here, we describe the development of a recombinant ASFV (ASFV-G-∆KP177R) lacking the KP177R gene as a tool to evaluate the role of p22 in virus replication and virulence in swine. The recombinant ASFV-G-∆KP177R demonstrated that the KP177R gene is non-essential for ASFV replication in primary swine macrophages, with virus yields similar to those of the parental, highly virulent field isolate Georgia2010 (ASFV-G). In addition, experimental infection of domestic pigs with ASFV-G-∆KP177R produced a clinical disease similar to that caused by the parental ASFV-G. Therefore, and surprisingly, p22 does not seem to be involved in virus replication or virulence in swine.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Proteínas Estruturais Virais/genética , Replicação Viral , Vírus da Febre Suína Africana/patogenicidade , Sequência de Aminoácidos , Animais , Células Cultivadas , Sequência Conservada , Deleção de Genes , Macrófagos/virologia , Mutação , Suínos , Carga Viral , Virulência , Fatores de Virulência/genética
8.
Bio Protoc ; 11(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33855107

RESUMO

Detection of live African swine fever virus (ASFV) has historically relied on the use of primary swine macrophages (PSM). PSM do not replicate and have to be isolated fresh from donor swine. We previously identified that a MA-104 cells (ATCC #CRL-2378.1), a commercially available cell line isolated from African green monkey ( Cercopithecus aethiops ) kidney epithelial cells, supports the detection of ASFV from field samples with a sensitivity comparable to that of primary swine macrophages. Collection of swine blood or lungs is time costing, which is often not readily available in most veterinary diagnostic laboratories. MA-104 cells could thus be used as substitute for primary swine macrophages to save significant lead time by avoiding the production of primary swine macrophages.

9.
Viruses ; 14(1)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062213

RESUMO

African swine fever virus (ASFV) is producing a devastating pandemic that, since 2007, has spread to a contiguous geographical area from central Europe to Asia. In July 2021, ASFV was detected in the Dominican Republic, the first report of the disease in the Americas in more than 40 years. ASFV is a large, highly complex virus harboring a large dsDNA genome that encodes for more than 150 genes. The majority of these genes have not been functionally characterized. Bioinformatics analysis predicts that ASFV gene A859L encodes for an RNA helicase, although its function has not yet been experimentally assessed. Here, we evaluated the role of the A859L gene during virus replication in cell cultures and during infection in swine. For that purpose, a recombinant virus (ASFV-G-∆A859L) harboring a deletion of the A859L gene was developed using the highly virulent ASFV Georgia (ASFV-G) isolate as a template. Recombinant ASFV-G-∆A859L replicates in swine macrophage cultures as efficiently as the parental virus ASFV-G, demonstrating that the A859L gene is non-essential for ASFV replication. Experimental infection of domestic pigs demonstrated that ASFV-G-∆A859L replicates as efficiently and induces a clinical disease indistinguishable from that caused by the parental ASFV-G. These studies conclude that the predicted RNA helicase gene A859L is not involved in the processes of virus replication or disease production in swine.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , RNA Helicases/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Células Cultivadas , Deleção de Genes , Genes Virais , Macrófagos/virologia , Sus scrofa , Suínos , Transcrição Gênica , Proteínas Virais/genética , Virulência/genética , Replicação Viral/genética
10.
Viruses ; 12(10)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092057

RESUMO

African swine fever virus (ASFV) is currently the most dreaded infectious disease affecting the global swine production industry. There is no commercial vaccine available, making the culling of infected animals the current solution to control outbreaks. Effective experimental vaccines have been developed by deleting virus genes associated with virulence. Deletion of the ASFV 9GL gene (∆9GL) has resulted in the attenuation of different ASFV strains, although the degree of attenuation varies across isolates. Here, we investigated the possibility of the increased safety of the experimental vaccine strain ASFV-G-Δ9GL by deleting two additional virus genes involved in pathogenesis, CD2v, a CD2 like viral encoded gene from the EP402R open reading frame (ORF), and C-type lectin-like viral gene, encoded from the EP153R ORF. Two new recombinant viruses were developed, ASFV-G-Δ9GL/ΔCD2v and ASFV-G-Δ9GL/ΔCD2v/ΔEP153R, harboring two and three gene deletions, respectively. ASFV-G-Δ9GL/ΔCD2v/ΔEP153R, but not ASFV-G-Δ9GL/ΔCD2v, had a decreased ability to replicate in vitro in swine macrophage cultures when compared with parental ASFV-G-Δ9GL. Importantly, ASFV-G-Δ9GL/ΔCD2v and ASFV-G-Δ9GL/ΔCD2v/ΔEP153R induced almost undetectable viremia levels when inoculated into domestic pigs and failed to protect them against challenge with parental virulent ASFV-Georgia, while ASFV-G-Δ9GL offered robust protection during challenge. Therefore, the deletion of CD2-like and C-type lectin-like genes significantly decreased the protective potential of ASFV-G-Δ9GL as a vaccine candidate. This study constitutes an example of the unpredictability of genetic manipulation involving the simultaneous deletion of multiple genes from the ASFV genome.


Assuntos
Vírus da Febre Suína Africana , Vacinas Virais/imunologia , Fatores de Virulência/genética , Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Animais , Anticorpos Antivirais , Antígenos Virais/genética , Deleção de Genes , Genes Virais , Genoma Viral , Lectinas/genética , Suínos , Vacinação/veterinária , Vacinas Atenuadas , Proteínas Virais/genética
11.
Viruses ; 12(10)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092258

RESUMO

The African swine fever (ASF) pandemic is currently affecting pigs throughout Eurasia, resulting in significant swine production losses. The causative agent, ASF virus (ASFV), is a large, structurally complex virus with a genome encoding more than 160 genes. The function of most of those genes remains unknown. Here, we presented the previously uncharacterized ASFV gene MGF360-1L, the first gene in the genome. The kinetic studies of virus RNA transcription demonstrated that the MGF360-1L gene was transcribed as a late virus protein. The essentiality of MGF360-1L to virus replication was evaluated by developing a recombinant ASFV lacking the gene (ASFV-G-ΔMGF360-1L). In primary swine macrophage cell cultures, ASFV-G-ΔMGF360-1L showed similar replication kinetics as the parental highly virulent field isolate Georgia2007 (ASFV-G). Domestic pigs experimentally infected with ASFV-G-ΔMGF360-1L presented with a clinical disease indistinguishable from that caused by ASFV-G, demonstrating that MGF360-1L was not involved in virulence in swine, the natural host of ASFV.


Assuntos
Vírus da Febre Suína Africana , Proteínas Virais/genética , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Células Cultivadas , Suínos , Fatores de Virulência/genética , Replicação Viral
12.
Viruses ; 12(8)2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731642

RESUMO

African swine fever virus (ASFV) is causing outbreaks both in domestic pigs and wild boar in Europe and Asia. In 2018, the largest pig producing country, China, reported its first outbreak of African swine fever (ASF). Since then, the disease has quickly spread to all provinces in China and to other countries in southeast Asia, and most recently to India. Outbreaks of the disease occur in Europe as far west as Poland, and one isolated outbreak has been reported in Belgium. The current outbreak strain is highly contagious and can cause a high degree of lethality in domestic pigs, leading to widespread and costly losses to the industry. Currently, detection of infectious ASFV in field clinical samples requires accessibility to primary swine macrophage cultures, which are infrequently available in most regional veterinary diagnostic laboratories. Here, we report the identification of a commercially available cell line, MA-104, as a suitable substrate for virus isolation of African swine fever virus.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/virologia , Surtos de Doenças/veterinária , Células Epiteliais/virologia , Vírus da Febre Suína Africana/fisiologia , Animais , Técnicas de Cultura de Células , Linhagem Celular , Chlorocebus aethiops , Macrófagos/virologia , Sus scrofa/virologia , Suínos
13.
Viruses ; 12(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585808

RESUMO

African swine fever virus (ASFV) is the causative agent of the African swine fever (ASF) epizootic currently affecting pigs throughout Eurasia, causing significant economic losses in the swine industry. The virus genome encodes for more than 160 genes, of which only a few have been studied in detail. Here we describe the previously uncharacterized ASFV open reading frame (ORF) C962R, a gene encoding for a putative NTPase. RNA transcription studies using infected swine macrophages demonstrate that the C962R gene is translated as a late virus protein. A recombinant ASFV lacking the C962R gene (ASFV-G-ΔC962R) demonstrates in vivo that the C962R gene is non-essential, since ASFV-G-ΔC962R has similar replication kinetics in primary swine macrophage cell cultures when compared to parental highly virulent field isolate Georgia2007 (ASFV-G). Experimental infection of domestic pigs with ASFV-G-ΔC962R produced a clinical disease similar to that caused by the parental ASFV-G, confirming that deletion of the C962R gene from the ASFV genome does not impact virulence.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/patologia , Nucleosídeo-Trifosfatase/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Deleção de Genes , Genoma Viral/genética , Macrófagos/virologia , Fases de Leitura Aberta/genética , Alinhamento de Sequência , Suínos , Doenças dos Suínos/virologia , Proteínas Virais/genética , Fatores de Virulência/genética , Replicação Viral/genética
14.
Viruses ; 12(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244508

RESUMO

Interactions between the major structural glycoprotein E2 of classical swine fever virus (CSFV) with host proteins have been identified as important factors affecting virus replication and virulence. Previously, using the yeast two-hybrid system, we identified swine host proteins specifically interacting with CSFV E2. In this report, we use a proximity ligation assay to demonstrate that swine host protein CCDC115 interacts with E2 in CSFV-infected swine cells. Using a randomly mutated E2 library in the context of a yeast two-hybrid methodology, specific amino acid mutations in the CSFV E2 protein responsible for disrupting the interaction with CCDC115 were identified. A recombinant CSFV mutant (E2ΔCCDC115v) harboring amino acid changes disrupting the E2 protein interaction with CCDC115 was produced and used as a tool to assess the role of the E2-CCDC115 interaction in viral replication and virulence in swine. CSFV E2ΔCCDC115v showed a slightly decreased ability to replicate in the SK6 swine cell line and a greater replication defect in primary swine macrophage cultures. A decreased E2-CCDC115 interaction detected by PLA is observed in cells infected with E2ΔCCDC115v. Importantly, animals intranasally infected with 105 TCID50 of E2ΔCCDC115v experienced a significantly longer survival period when compared with those infected with the parental Brescia strain. This result would indicate that the ability of CSFV E2 to bind host CCDC115 protein during infection plays an important role in virus replication in swine macrophages and in virus virulence during the infection in domestic swine.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/virologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Animais , Células Cultivadas , Peste Suína Clássica/metabolismo , Peste Suína Clássica/patologia , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/metabolismo , Vírus da Febre Suína Clássica/patogenicidade , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Mutação , Ligação Proteica , Análise de Sobrevida , Suínos , Proteínas do Envelope Viral/genética , Virulência/genética , Replicação Viral/genética
15.
Viruses ; 12(4)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283651

RESUMO

E2 is the major structural glycoprotein of the classical swine fever virus (CSFV). E2 has been shown to be involved in important virus functions such as replication and virulence in swine. Using the yeast two-hybrid system, we previously identified several host proteins specifically interacting with CSFV E2. Here, we analyze the protein interaction of E2 with SERTA domain containing protein 1 (SERTAD1), a factor involved in the stimulation of the transcriptional activities of different host genes. We have confirmed that the interaction between these two proteins occurs in CSFV-infected swine cells by using a proximity ligation assay and confocal microscopy. Amino acid residues in the CSFV E2 protein that are responsible for mediating the interaction with SERTAD1 were mapped by a yeast two-hybrid approach using a randomly mutated E2 library. Using that information, a recombinant CSFV mutant (E2ΔSERTAD1v) that harbors substitutions in those residues mediating the protein-interaction with SERTAD1 was developed and used to study the role of the E2-SERTAD1 interaction in viral replication and virulence in swine. CSFV E2ΔSERTAD1v, when compared to the parental BICv, showed a clearly decreased ability to replicate in the SK6 swine cell line and a more severe replication defect in primary swine macrophage cultures. Importantly, 80% of animals infected with E2ΔSERTAD1v survived infection, remaining clinically normal during the 21-day observational period. This result would indicate that the ability of CSFV E2 to bind host SERTAD1 protein during infection plays a critical role in virus virulence.


Assuntos
Vírus da Febre Suína Clássica/fisiologia , Peste Suína Clássica/metabolismo , Peste Suína Clássica/virologia , Interações Hospedeiro-Patógeno , Fatores de Transcrição/metabolismo , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Animais , Linhagem Celular , Mutação , Ligação Proteica , Suínos , Técnicas do Sistema de Duplo-Híbrido , Virulência
16.
Viruses ; 12(1)2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947814

RESUMO

African swine fever virus (ASFV) causes a contagious and frequently lethal disease of pigs with significant economic consequences to the swine industry. The ASFV genome encodes for more than 160 genes, but only a few of them have been studied in detail. Here we report the characterization of open reading frame (ORF) MGF360-16R. Kinetic studies of virus RNA transcription demonstrated that the MGF360-16R gene is transcribed as a late virus protein. Analysis of host-protein interactions for the MGF360-16R gene using a yeast two-hybrid screen identified SERTA domain containing 3 (SERTAD3) and syndecan-binding protein (SDCBP) as host protein binding partners. SERTAD3 and SDCBP are both involved in nuclear transcription and SDCBP has been shown to be involved in virus traffic inside the host cell. Interaction between MGF360-16R and SERTAD3 and SDCBP host proteins was confirmed in eukaryotic cells transfected with plasmids expressing MGF360-16R and SERTAD3 or SDCBP fused to fluorescent tags. A recombinant ASFV lacking the MGF360-16R gene (ASFV-G-ΔMGF360-16R) was developed from the highly virulent field isolate Georgia2007 (ASFV-G) and was used to show that MGF360-16R is a nonessential gene. ASFV-G-ΔMGF360-16R had a similar replication ability in primary swine macrophage cell cultures when compared to its parental virus ASFV-G. Experimental infection of domestic pigs showed that ASFV-G-ΔMGF360-16R is as virulent as the parental virus ASFV-G.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/virologia , Sinteninas/metabolismo , Transativadores/metabolismo , Proteínas Virais/metabolismo , Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/patogenicidade , Animais , Células Cultivadas , Deleção de Genes , Expressão Gênica , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Fases de Leitura Aberta , Ligação Proteica , Suínos , Proteínas Virais/genética , Virulência , Replicação Viral
17.
Sci Rep ; 10(1): 494, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949276

RESUMO

The CD2-like African swine fever virus (ASFV) gene 8DR, (also known as EP402R) encodes for a structural transmembrane glycoprotein that has been shown to mediate hemadsorption and be involved in host immunomodulation as well as the induction of protective immune response. In addition, several natural ASFV isolates showing decreased virulence in swine has been shown to be non-hemadsorbing suggesting an association between altered or deleted forms of 8DR and virus attenuation. Here we demonstrate that deletion of 8DR gene from the genome of ASFV Georgia2010 isolate (ASFV-G-Δ8DR) does not significantly alter the virulence of the virus. ASFV-G-Δ8DR inoculated intramuscularly or intranasally (in a range of 102 to 104 TCID50) produced a clinical disease in domestic pigs indistinguishable from that induced by the same doses of the virulent parental ASFV Georgia2010 isolate. In addition, viremia values in ASFV-G-Δ8DR do not differ from those detected in animals infected with parental virus. Therefore, deletion of 8DR gene is not associated with a noticeable decrease in virulence of the ASFV Georgia isolate.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/virologia , Deleção de Genes , Glicoproteínas/genética , Viremia/virologia , Vírus da Febre Suína Africana/genética , Animais , Células Cultivadas , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Macrófagos/citologia , Macrófagos/virologia , Suínos , Proteínas Virais/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma/métodos
18.
Mol Cell Biol ; 39(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31085681

RESUMO

Fanconi anemia (FA) is an inherited disease characterized by bone marrow failure and increased cancer risk. FA is caused by mutation of any 1 of 22 genes, and the FA proteins function cooperatively to repair DNA interstrand cross-links (ICLs). A central step in the activation of the FA pathway is the monoubiquitination of the FANCD2 and FANCI proteins, which occurs within chromatin. How FANCD2 and FANCI are anchored to chromatin remains unknown. In this study, we identify and characterize a FANCD2 histone-binding domain (HBD) and embedded methyl-lysine-binding domain (MBD) and demonstrate binding specificity for H4K20me2. Disruption of the HBD/MBD compromises FANCD2 chromatin binding and nuclear focus formation and its ability to promote error-free DNA interstrand cross-link repair, leading to increased error-prone repair and genome instability. Our study functionally describes the first FA protein chromatin reader domain and establishes an important link between this human genetic disease and chromatin plasticity.


Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Histonas/metabolismo , Sítios de Ligação , Linhagem Celular , Cromatina/metabolismo , Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Instabilidade Genômica , Células HeLa , Histonas/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
19.
Viruses ; 11(4)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934875

RESUMO

Classical swine fever virus (CSFV) E2 protein, the major virus structural glycoprotein, is an essential component of the viral envelope. E2 is involved in virus absorption, induction of a protective immune response and is critical for virulence in swine. Using the yeast two-hybrid system, we identified protein phosphatase 1 catalytic subunit beta (PPP1CB), which is part of the Protein Phosphatase 1 (PP1) complex, as a specific binding host partner for E2. We further confirmed the occurrence of this interaction in CSFV-infected swine cells by using two independent methodologies: Co-immunoprecipitation and Proximity Ligation Assay. In addition, we demonstrated that pharmacological activation of the PP1 pathway has a negative effect on CSFV replication while inhibition of the PP1 pathway or knockdown of PPP1CB by siRNA had no observed effect. Overall, our data suggests that the CSFV E2 and PPP1CB protein interact in infected cells, and that activation of the PP1 pathway decreases virus replication.


Assuntos
Domínio Catalítico , Vírus da Febre Suína Clássica/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Proteína Fosfatase 1/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Vírus da Febre Suína Clássica/imunologia , Ligação Proteica , Mapeamento de Interação de Proteínas , Suínos , Técnicas do Sistema de Duplo-Híbrido , Replicação Viral
20.
Viruses ; 10(9)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154321

RESUMO

We have previously shown that Classical Swine Fever Virus (CSFV) p7 is an essential nonstructural protein with a viroporin activity, a critical function in the progression of virus infection. We also identified p7 domains and amino acid residues critical for pore formation. Here, we describe how p7 specifically interacts with host protein CAMLG, an integral ER transmembrane protein involved in intracellular calcium release regulation and signal response generation. Detection of interaction as well as the identification of p7 areas mediating interaction with CAMLG was performed by yeast two-hybrid. p7-CAMLG interaction was further confirmed by confocal microscopy in eukaryotic cells, co-expressing both proteins. Mutant forms of p7 having substituted native residues identified as mediating interaction with CAMLG showed a decreased co-localization compared with the native forms of p7. Furthermore, it is shown that native p7, but not the mutated forms of p7 that fail to interact with CAMLG, efficiently mediates calcium permeability in the ER. Interestingly, viruses harboring some of those mutated forms of p7 have been previously shown to have a significantly decreased virulence in swine.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cálcio/metabolismo , Vírus da Febre Suína Clássica/fisiologia , Retículo Endoplasmático/metabolismo , Interações Hospedeiro-Patógeno , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular , Células HEK293 , Humanos , Mapas de Interação de Proteínas/fisiologia , Saccharomyces cerevisiae/genética , Suínos , Proteínas Virais Reguladoras e Acessórias/genética , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA