Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prostate ; 84(7): 656-665, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38414098

RESUMO

BACKGROUND: Prostate cancer is a common cancer in men. Detection methods include the measurement of biomarkers: prostate-specific antigen (PSA), free PSA, [-2]proPSA, and the calculated indices: fPSA/tPSA ratio and Prostate Health Index (PHI). Proper preanalytical conditions are crucial for precise measurement and failure to adhere to protocols or regulations can influence the diagnostic algorithm. We assessed the stability of the above-mentioned biomarkers, fPSA/tPSA ratio and PHI, under various pre-analytical conditions. METHODS: Serum samples from 45 males were collected and stored under specific conditions before tPSA, fPSA, and [-2]proPSA were measured. Subsequently, the fPSA/tPSA and PHI were calculated. RESULTS: tPSA, fPSA, and [-2]proPSA remained stable during the two freeze-thaw cycles. Storage at 4°C and 22°C resulted in stable tPSA concentrations. However, fPSA levels decreased and [-2]proPSA levels increased over time. The fPSA/tPSA ratio remained stable for 72 h, at which point a decrease was observed in the samples kept at 4°C and 22°C. A gradual increase in PHI was observed in the samples kept at 4°C and 22°C. CONCLUSIONS: All biomarkers remained stable during two freeze-thaw cycles. tPSA was the most stable analyte when stored at 4°C, as well as at RT. A gradual increase of [-2]proPSA and a slight decrease in fPSA were observed during the storage test. This led to a decrease in the fPSA/tPSA ratio and an elevation in the PHI. We therefore recommend measuring prostate biomarkers promptly following blood collection. IMPACT: Understanding the pre-analytical stability of prostate biomarkers helps prevent false positive results and improve the accuracy of diagnostics for prostate cancer.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Humanos , Masculino , Próstata/patologia , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/química , Neoplasias da Próstata/diagnóstico
2.
Diagnostics (Basel) ; 13(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37189609

RESUMO

The anti-Müllerian hormone (AMH) is a glycoprotein that plays an important role in prenatal sex differentiation. It is used as a biomarker in polycystic ovary syndrome (PCOS) diagnostics, as well as for estimating an individual's ovarian reserve and the ovarian response to hormonal stimulation during in vitro fertilization (IVF). The aim of this study was to test the stability of AMH during various preanalytical conditions that are in accordance with the ISBER (International Society for Biological and Environmental Repositories) protocol. Plasma and serum samples were taken from each of the 26 participants. The samples were then processed according to the ISBER protocol. AMH levels were measured in all the samples simultaneously using the chemiluminescent kit ACCESS AMH in a UniCel® DxI 800 Immunoassay System (Beckman Coulter, Brea, CA, USA). The study proved that AMH retains a relatively high degree of stability during repeated freezing and thawing in serum. AMH was shown to be less stable in plasma samples. Room temperature proved to be the least suitable condition for the storage of samples before performing the biomarker analysis. During the testing of storage stability at 5-7 °C, the values decreased over time for all the plasma samples but remained stable in the serum samples. We proved that AMH is highly stable under various stress conditions. The anti-Müllerian hormone retained the greatest stability in the serum samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA