RESUMO
Endo-microscopy is crucial for real-time 3D visualization of internal tissues and subcellular structures. Conventional methods rely on axial movement of optical components for precise focus adjustment, limiting miniaturization and complicating procedures. Meta-device, composed of artificial nanostructures, is an emerging optical flat device that can freely manipulate the phase and amplitude of light. Here, an intelligent fluorescence endo-microscope is developed based on varifocal meta-lens and deep learning (DL). The breakthrough enables in vivo 3D imaging of mouse brains, where varifocal meta-lens focal length adjusts through relative rotation angle. The system offers key advantages such as invariant magnification, a large field-of-view, and optical sectioning at a maximum focal length tuning range of ≈2 mm with 3 µm lateral resolution. Using a DL network, image acquisition time and system complexity are significantly reduced, and in vivo high-resolution brain images of detailed vessels and surrounding perivascular space are clearly observed within 0.1 s (≈50 times faster). The approach will benefit various surgical procedures, such as gastrointestinal biopsies, neural imaging, brain surgery, etc.
Assuntos
Encéfalo , Aprendizado Profundo , Imageamento Tridimensional , Microscopia de Fluorescência , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Microscopia de Fluorescência/instrumentação , Desenho de Equipamento/métodosRESUMO
Airy beams have become an important beam shape for structured light beams because of their interesting self-accelerating and parabolic propagation properties. Many variants of Airy beams have been proposed, among which the Airy beam with cylindrical symmetry [also known as the circular Airy beam or abrupt autofocusing (AAF) beam] is particularly peculiar and has attracted special attention due to its shape transformation during propagation. Much effort has been devoted to understanding the properties of the AAF beam. In this work, we present simulation results for generating the AAF beam using a phase-only mask. A cubic chirp-modulated axicon phase is used to create the mask. We found an optimal value for the axiconic phase, and the cubic phase is essential for controlling the AAF beam's shape. We demonstrate that a phase-only mask is an effective and simple method for generating high contrast between the initial and AAF plane. We present the results for beam formation and propagation dynamics of the AAF beam using the control parameters of the phase mask. We also discuss the design parameters and their influence on the AAF beam shapes. Our results pave the way for a deeper understanding of the beam formation and propagation dynamics of the AAF beam.
RESUMO
Digital holographic microscopy (DHM) is a powerful quantitative phase imaging (QPI) technique that is capable of recording sample's phase information to enhance image contrast. In off-axis DHM, high-quality QPI images can be generated within a single recorded hologram, and the system stability can be enhanced by common-path configuration. Diffraction gratings are widely used components in common-path DHM systems; however, the presence of multiple diffraction beams leads to system power loss. Here, we propose and demonstrate implementation of a volume holographic grating (VHG) in common-path DHM, which provides single diffraction order. VHG in common-path DHM (i.e., VHG-DHM) helps in improving signal-to-noise ratio as compared to the conventional DHM. In addition, VHG, with inherently high angular selectivity, reduces image noise caused by stray light. With a simple fabrication process, it is convenient to utilize VHG to control the beam separation angle of DHM. Further, by using Bragg-matched wavelength degeneracy to avoid potential cell damaging effect in blue light, the VHG is designed for recording at a maximum sensitive wavelength of â¼488â nm, while our VHG-DHM is operated at the longer wavelength of red 632.8â nm for cell observation. Experimental results, measured by the VHG-DHM, show the measurement of target thickness ranging from 100â nm to 350â nm. In addition, stability of the system is quantitatively measured. High-contrast QPI images of human lung cancer cells are demonstrated.
RESUMO
Saturated excitation microscopy, which collects nonlinear fluorescence signals generated by saturation, has been proposed to improve three-dimensional spatial resolution. Differential saturated excitation (dSAX) microscopy can further improve the detection efficiency of a nonlinear fluorescence signal. By comparing signals obtained at different saturation levels, high spatial resolution can be achieved in a simple and efficient manner. High-resolution multiplane microscopy is perquisite for volumetric imaging of thick samples. To the best of our knowledge, no reports of multiplane dSAX have been made. Our aim is to obtain multiplane high-resolution optically sectioned images by adapting differential saturated excitation in confocal laser scanning fluorescence microscopy. To perform multiplane dSAX microscopy, a variable focus lens is employed in a telecentric design to achieve focus tunability with constant magnification and contrast throughout the axial scanning range. Multiplane fluorescence imaging of two different types of pollen grains shows improved resolution and contrast. Our system's imaging performance is evaluated using standard targets, and the results are compared with standard confocal microscopy. Using a simple and efficient method, we demonstrate multiplane high-resolution fluorescence imaging. We anticipate that high-spatial resolution combined with high-speed focus tunability with invariant contrast and magnification will be useful in performing 3D imaging of thick biological samples.
RESUMO
Airy light sheets combined with the deconvolution approach can provide multiple benefits, including large field of view (FOV), thin optical sectioning, and high axial resolution. The efficient design of an Airy light-sheet fluorescence microscope requires a compact illumination system. Here, we show that an Airy light sheet can be conveniently implemented in microscopy using a volume holographic grating (VHG). To verify the FOV and the axial resolution of the proposed VHG-based Airy light-sheet fluorescence microscope, ex-vivo fluorescently labeled Caenorhabditis elegans (C. elegans) embryos were imaged, and the Richardson-Lucy deconvolution method was used to improve the image contrast. Optimized parameters for deconvolution were compared with different methods. The experimental results show that the FOV and the axial resolution were 196 µm and 3 µm, respectively. The proposed method of using a compact VHG to replace the common spatial light modulator provides a direct solution to construct a compact light-sheet fluorescence microscope.
RESUMO
Phase contrast imaging techniques enable the visualization of disparities in the refractive index among various materials. However, these techniques usually come with a cost: the need for bulky, inflexible, and complicated configurations. Here, we propose and experimentally demonstrate an ultracompact meta-microscope, a novel imaging platform designed to accomplish both optical and digital phase contrast imaging. The optical phase contrast imaging system is composed of a pair of metalenses and an intermediate spiral phase metasurface located at the Fourier plane. The performance of the system in generating edge-enhanced images is validated by imaging a variety of human cells, including lung cell lines BEAS-2B, CLY1, and H1299 and other types. Additionally, we integrate the ResNet deep learning model into the meta-microscope to transform bright-field images into edge-enhanced images with high contrast accuracy. This technology promises to aid in the development of innovative miniature optical systems for biomedical and clinical applications.
Assuntos
Microscopia , Dispositivos Ópticos , Humanos , Microscopia/métodos , Microscopia de Contraste de Fase/métodos , Imagem ÓpticaRESUMO
Quantitative differential phase contrast (QDPC) microscope plays an important role in biomedical research since it can provide high-resolution images and quantitative phase information for thin transparent objects without staining. With weak phase assumption, the retrieval of phase information in QDPC can be treated as a linearly inverse problem which can be solved by Tikhonov regularization. However, the weak phase assumption is limited to thin objects, and tuning the regularization parameter manually is inconvenient. A self-supervised learning method based on deep image prior (DIP) is proposed to retrieve phase information from intensity measurements. The DIP model that takes intensity measurements as input is trained to output phase image. To achieve this goal, a physical layer that synthesizes the intensity measurements from the predicted phase is used. By minimizing the difference between the measured and predicted intensities, the trained DIP model is expected to reconstruct the phase image from its intensity measurements. To evaluate the performance of the proposed method, we conducted two phantom studies and reconstructed the micro-lens array and standard phase targets with different phase values. In the experimental results, the deviation of the reconstructed phase values obtained from the proposed method was less than 10% of the theoretical values. Our results show the feasibility of the proposed methods to predict quantitative phase with high accuracy, and no use of ground truth phase.
RESUMO
Volume holographic elements are excellent at shaping high-quality spatial and spectral modes. Many microscopy and laser-tissue interaction applications require precise delivery of optical energy at specific sites without affecting the peripheral regions. Owing to the property of very high energy contrast between the input and the focal plane, abrupt autofocusing (AAF) beams can be the right candidate for laser-tissue interaction. In this work, we demonstrate the recording and reconstruction of a PQ:PMMA photopolymer-based volume holographic optical beam shaper for an AAF beam. We experimentally characterize the generated AAF beams and show the broadband operation property. The fabricated volume holographic beam shaper shows long-term optical quality and stability. Our method offers multiple advantages including high angular selectivity, broadband operation, and intrinsically compact size. The present method may find important applications in designing compact optical beam shapers for biomedical lasers, illumination for microscopy, optical tweezers, and laser-tissue interaction experiments.
RESUMO
BACKGROUND: Identifying risk factors for poor outcomes can help with risk stratification and targeting of treatment. Risk factors for mortality and exacerbations have been identified in bronchiectasis but have been almost exclusively studied in European and North American populations. This study investigated the risk factors for poor outcome in a large population of bronchiectasis patients enrolled in India. METHODS: The European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC) and Respiratory Research Network of India (EMBARC-India) registry is a prospective observational study of adults with computed tomography-confirmed bronchiectasis enrolled at 31 sites across India. Baseline characteristics of patients were used to investigate associations with key clinical outcomes: mortality, severe exacerbations requiring hospital admission, overall exacerbation frequency and decline in forced expiratory volume in 1â s. RESULTS: 1018 patients with at least 12-month follow-up data were enrolled in the follow-up study. Frequent exacerbations (≥3 per year) at baseline were associated with an increased risk of mortality (hazard ratio (HR) 3.23, 95% CI 1.39-7.50), severe exacerbations (HR 2.71, 95% CI 1.92-3.83), future exacerbations (incidence rate ratio (IRR) 3.08, 95% CI 2.36-4.01) and lung function decline. Coexisting COPD, dyspnoea and current cigarette smoking were similarly associated with a worse outcome across all end-points studied. Additional predictors of mortality and severe exacerbations were increasing age and cardiovascular comorbidity. Infection with Gram-negative pathogens (predominantly Klebsiella pneumoniae) was independently associated with increased mortality (HR 3.13, 95% CI 1.62-6.06), while Pseudomonas aeruginosa infection was associated with severe exacerbations (HR 1.41, 95% CI 1.01-1.97) and overall exacerbation rate (IRR 1.47, 95% CI 1.13-1.91). CONCLUSIONS: This study identifies risk factors for morbidity and mortality among bronchiectasis patients in India. Identification of these risk factors may support treatment approaches optimised to an Asian setting.
Assuntos
Bronquiectasia , Adulto , Humanos , Seguimentos , Bronquiectasia/terapia , Bronquiectasia/tratamento farmacológico , Pulmão , Sistema de Registros , Progressão da DoençaRESUMO
SIGNIFICANCE: Quantitative differential phase contrast (qDPC) microscopy enhances phase contrast by asymmetric illumination using partially coherent light and multiple intensity measurements. However, for live cell imaging, motion artifacts and image acquisition time are important issues. For live cell imaging, a large number of intensity measurements can limit the imaging quality and speed. The minimum number of intensity measurements in qDPC can greatly enhance performance for live imaging. AIM: To obtain high-contrast, isotropic qDPC images with two intensity measurements and perform time-lapse imaging of biological samples. APPROACH: Based on the color-coded design, a dual-color linear-gradient pupil is proposed to achieve isotropic phase contrast response with two intensity measurements. In our method, the purpose of designing a dual-color coded pupil is twofold: first, to obtain a linear amplitude gradient for asymmetric illumination, which is required to get a circular symmetry of transfer function, and second, to reduce the required number of frames for phase retrieval. RESULTS: To demonstrate the imaging performance of our system, standard microlens arrays were used as samples. We performed time-lapse quantitative phase imaging of rat astrocytes under a low-oxygen environment. Detailed morphology and dynamic changes such as the apoptosis process and migration of cells were observed. CONCLUSIONS: It is shown that dual-color linear-gradient pupils in qDPC can outperform half-circle and vortex pupils, and isotropic phase transfer function can be achieved with only two-axis measurements. The reduced number of frames helps in achieving faster imaging speed as compared to the typical qDPC system. The imaging performance of our system is evaluated by time-lapse imaging of rat astrocytes. Different morphological changes in cells during their life cycle were observed in terms of quantitative phase change values.
Assuntos
Iluminação , Animais , Microscopia de Contraste de Fase/métodos , Ratos , Imagem com Lapso de Tempo/métodosRESUMO
Multifocal illumination can improve image acquisition time compared to single point scanning in confocal microscopy. However, due to an increase in the system complexity, obtaining uniform multifocal illumination throughout the field of view with conventional methods is challenging. Here, we propose a volume holographic lenslet array illuminator (VHLAI) for multifocal confocal microscopy. To obtain uniform array illumination, a super Gaussian (SG) beam has been incorporated through VHLAI with an efficiency of 43%, and implemented in a confocal microscope. The design method for a photo-polymer based volume holographic beam shaper is presented and its advantages are thoroughly addressed. The proposed system can significantly improve image acquisition time without sacrificing the quality of the image. The performance of the proposed multifocal confocal microscopy was compared with wide-field images and also evaluated by measuring optically sectioned microscopic images of fluorescence beads, florescence pollen grains, and biological samples. The proposed multifocal confocal system generates images faster without any changes in scanning devices. The present method may find important applications in high-speed multifocal microscopy platforms.
Assuntos
Holografia , Holografia/métodos , Iluminação , Microscopia Confocal/métodos , Distribuição NormalRESUMO
Manipulation and precise delivery of optical energies in the regions of interest within specimens require different strategies. Hence, proper control of input beam parameters is a prerequisite. One of the prominent methods is metasurface optics, capable of crafting properties of light at nanoscales. Here, the generation of an abrupt autofocusing (AAF) beam by a nanophotonic metasurface for biomedical applications is demonstrated. Fluorescence guided laser microprofiling of mouse cardiac samples is experimentally investigated, using the AAF beam to deliver optical energy selectively to specific locations. In addition, photocoagulation of ex vivo swine skin tissue is performed and observed through optical coherence tomography. The results show great potentials for integrating metasurface optics to realize miniature laser surgery instruments for wide applications in biomedicine.
Assuntos
Lasers , Óptica e Fotônica , Animais , Camundongos , SuínosRESUMO
The optical tweezer is one of the important techniques for contactless manipulation in biological research to control the motion of tiny objects. For three-dimensional (3D) optical manipulation, shaped light beams have been widely used. Typically, spatial light modulators are used for shaping light fields. However, they suffer from bulky size, narrow operational bandwidth, and limitations of incident polarization states. Here, a cubic-phase dielectric metasurface, composed of GaN circular nanopillars, is designed and fabricated to generate a polarization-independent vertically accelerated two-dimensional (2D) Airy beam in the visible region. The distinctive propagation characteristics of a vertically accelerated 2D Airy beam, including non-diffraction, self-acceleration, and self-healing, are experimentally demonstrated. An optical manipulation system equipped with a cubic-phase metasurface is designed to perform 3D manipulation of microscale particles. Due to the high-intensity gradients and the reciprocal propagation trajectory of Airy beams, particles can be laterally shifted and guided along the axial direction. In addition, the performance of optical trapping is quantitatively evaluated by experimentally measured trapping stiffness. Our metasurface has great potential to shape light for compact systems in the field of physics and biological applications.
RESUMO
Quantitative differential phase-contrast (qDPC) imaging is a label-free phase retrieval method for weak phase objects using asymmetric illumination. However, qDPC imaging with fewer intensity measurements leads to anisotropic phase distribution in reconstructed images. In order to obtain isotropic phase transfer function, multiple measurements are required; thus, it is a time-consuming process. Here, we propose the feasibility of using deep learning (DL) method for isotropic qDPC microscopy from the least number of measurements. We utilize a commonly used convolutional neural network namely U-net architecture, trained to generate 12-axis isotropic reconstructed cell images (i.e. output) from 1-axis anisotropic cell images (i.e. input). To further extend the number of images for training, the U-net model is trained with a patch-wise approach. In this work, seven different types of living cell images were used for training, validation, and testing datasets. The results obtained from testing datasets show that our proposed DL-based method generates 1-axis qDPC images of similar accuracy to 12-axis measurements. The quantitative phase value in the region of interest is recovered from 66% up to 97%, compared to ground-truth values, providing solid evidence for improved phase uniformity, as well as retrieved missing spatial frequencies in 1-axis reconstructed images. In addition, results from our model are compared with paired and unpaired CycleGANs. Higher PSNR and SSIM values show the advantage of using the U-net model for isotropic qDPC microscopy. The proposed DL-based method may help in performing high-resolution quantitative studies for cell biology.
Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Microscopia de Contraste de FaseRESUMO
Fluorescence microscopy with optical sectioning capabilities is extensively utilized in biological research to obtain three-dimensional structural images of volumetric samples. Tunable lenses have been applied in microscopy for axial scanning to acquire multiplane images. However, images acquired by conventional tunable lenses suffer from spherical aberration and distortions. Here, we design, fabricate, and implement a dielectric Moiré metalens for fluorescence imaging. The Moiré metalens consists of two complementary phase metasurfaces, with variable focal length, ranging from â¼10 to â¼125 mm at 532 nm by tuning mutual angles. In addition, a telecentric configuration using the Moiré metalens is designed for high-contrast multiplane fluorescence imaging. The performance of our system is evaluated by optically sectioned images obtained from HiLo illumination of fluorescently labeled beads, as well as ex vivo mice intestine tissue samples. The compact design of the varifocal metalens may find important applications in fluorescence microscopy and endoscopy for clinical purposes.
Assuntos
Lentes , Animais , Endoscopia , Iluminação , Camundongos , Microscopia de FluorescênciaRESUMO
A volume holographic (VHG) grating-based multi-plane differential confocal microscopy (DCM) is proposed for axial scan-free imaging. Also, we briefly reviewed our previous works on volume holographic-based confocal imaging. We show that without degrading imaging performance, it is possible to simultaneously obtain two depth-resolved optically sectioned images with improved axial resolution using multi-plane DCM. The performance of our multi-plane DCM was evaluated by measuring the surface profile of a silicon micro-hole array with depths separation around 10 µm. The axial sensitivity of the system is around 25 nm. Our system has the advantages of multi-plane imaging with high axial sensitivity and high optical sectioning ability. Our method can be used for reflective surface profiling and multi-plane fluorescence imaging. The present methods may find important applications in surface metrology for label-free biological samples, as well as industrial applications.
RESUMO
Confocal endoscopy has been widely used to obtain fine optically sectioned images. However, confocal endomicroscopic images are formed by point-by-point scanning in both lateral and axial directions, which results in long image acquisition time. Here, an endomicroscope with telecentric configuration is presented to achieve nonmechanical and rapid axial scanning for volumetric fluorescence imaging. In our system, optical sectioning in wide-field fashion is obtained through HiLo imaging with a digital micromirror device. Axial scanning, without mechanical moving parts, is conducted by digital focus adjustment using an electrically tunable lens, offering constant magnification and contrast. We demonstrate imaging performance of our system with optically sectioned images using fluorescently labeled beads, as well as ex vivo mice cardiac tissue samples. Our system provides multiple advantages, in terms of improved scanning range, and reduced image acquisition time, which shows great potentials for three-dimensional biopsies of volumetric biological samples.
Assuntos
Cristalino , Lentes , Animais , Endoscopia , Desenho de Equipamento , Técnicas Histológicas , CamundongosRESUMO
Three-dimensional (3D) imaging of living organisms requires fine optical sectioning and high-speed image acquisition, which can be achieved by light sheet fluorescence microscopy (LSFM). However, orthogonal illumination and detection arms in the LSFM system make it bulky. Here, we propose and demonstrate the application of a volume holographic optical element (photopolymer-based volume holographic grating) for designing a compact LSFM system, called a volume holographic LSFM (VHLSFM). Using the VHLSFM, we performed in vivo imaging of Caenorhabditis elegans (C. elegans) and observed high-contrast optically sectioned fluorescence images of the oocytes and embryonic development in real time for 3D imaging.
RESUMO
SIGNIFICANCE: Two-photon (2P) fluorescence imaging can provide background-free high-contrast images from the scattering tissues. However, obtaining a multiplane image is not straightforward. We present a two-photon volume holographic imaging (2P-VHI) system for multiplane imaging. AIM: Our goal was to design and implement a 2P-VHI system that can provide the high-contrast optically sectioned images at multiple planes. APPROACH: A 2P-VHI system is presented that incorporates angularly multiplexed volume holographic gratings and a femtosecond laser source for fluorescence excitation for multiplane imaging. A volume hologram with multiplexed gratings provides multifocal observation, whereas nonlinear excitation using a femtosecond laser helps in significantly enhancing both depth resolution and contrast of images. RESULTS: Standard fluorescent beads are used to demonstrate the imaging performance of the 2P-VHI system. Two-depth resolved optical-sectioning images of fluorescently labeled thick mice intestine samples were obtained. In addition, the optical sectioning capability of our system is measured and compared with that of a conventional VHI system. CONCLUSIONS: Results demonstrated that 2P excitation in VHI systems provided the optical sectioning ability that helps in reducing background noise in the images. Integration of nonlinear fluorescence excitation in the VHI provides some unique advantages to the system and has potential to design multidepth optical sectioned spatial-spectral imaging systems.
Assuntos
Holografia , Microscopia , Animais , Lasers , Camundongos , Imagem Óptica , FótonsRESUMO
SIGNIFICANCE: Differential phase contrast (DPC) is a well-known imaging technique for phase imaging. However, simultaneously acquiring multidepth DPC images is a non-trivial task. We propose simultaneous multiplane DPC imaging using volume holographic microscopy (VHM). AIM: To design and implement a new configuration of DPC-VHM for multiplane imaging. APPROACH: The angularly multiplexed volume holographic gratings (AMVHGs) and the wavelength-coded volume holographic gratings (WC-VHGs) are used for this purpose. To obtain asymmetric illumination for DPC images, a dynamic illumination system is designed by modifying the regular Köhler illumination using a thin film transistor panel (TFT-panel). RESULTS: Multidepth DPC images of standard resolution chart and biosamples were used to compare imaging performance with the corresponding bright-field images. An average contrast enhancement of around three times is observed for target resolution chart by DPC-VHM. Imaging performance of our system is studied by modulation transfer function analysis, which suggests that DPC-VHM not only suppresses the DC component but also enhances high-frequency information. CONCLUSIONS: Proposed DPC-VHM can acquire multidepth-resolved DPC images without axial scanning. The illumination part of the system is adjustable so that the system can be adapted to bright-field mode, phase contrast mode, and DPC mode by controlling the pattern on the TFT-panel.