Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 8(42): 39562-39569, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901533

RESUMO

Membranes provide a highly selective barrier that defines the boundaries of any cell while providing an interface for communication and nutrient uptake. However, despite their central physiological role, our capacity to study or even engineer the permeation of distinct solutes across biological membranes remains rudimentary. This especially applies to Gram-negative bacteria, where the outer and inner membrane impose two permeation barriers. Addressing this analytical challenge, we exemplify how the permeability of the Escherichia coli cell envelope can be dissected using a small-molecule-responsive fluorescent protein sensor. The approach is exemplified for the biotechnologically relevant macrolide rapamycin, for which we first construct an intensiometric rapamycin detector (iRapTor) while comprehensively probing key design principles in the iRapTor scaffold. Specifically, this includes the scope of minimal copolymeric linkers as a function of topology and the concomitant need for gate post residues. In a subsequent step, we apply iRapTors to assess the permeability of the E. coli cell envelope to rapamycin. Despite its lipophilic character, rapamycin does not readily diffuse across the E. coli envelope but can be enhanced by recombinantly expressing a nanopore in the outer membrane. Our study thus provides a blueprint for studying and actuating the permeation of small molecules across the prokaryotic cell envelope.

2.
Microorganisms ; 10(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35208846

RESUMO

Sepsis is a leading cause of morbidity and mortality, annually affecting millions of people worldwide. Immediate treatment initiation is crucial to improve the outcome but despite great progress, early identification of septic patients remains a challenge. Recently, white blood cell morphology was proposed as a new biomarker for sepsis diagnosis. In this proof-of-concept study, we aimed to investigate the effect of different bacteria and their determinants on T-lymphocytes by digital holographic microscopy (DHM). We hypothesize that species- and strain-specific morphological changes occur, which may offer a new approach for early sepsis diagnosis and identification of the causative agent. Jurkat cells as a model system were exposed to different S. aureus or E. coli strains either using sterile determinants or living bacteria. Time-lapse DHM was applied to analyze cellular morphological changes. There were not only living bacteria but also membrane vesicles and sterile culture supernatant-induced changes of cell area, circularity, and mean phase contrast. Interestingly, different cellular responses occurred depending on both the species and strain of the causative bacteria. Our findings suggest that investigation of T-lymphocyte morphology might provide a promising tool for the early identification of bacterial infections and possibly discrimination between different causative agents. Distinguishing gram-positive from gram-negative infection would already offer a great benefit for the proper administration of antibiotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA