Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 162(1): 35-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518335

RESUMO

The genome of Bacillus subtilis strain 168 encodes ten rRNA (rrn) operons. We previously reported that strains with only a single rrn operon had a decreased growth and sporulation frequency. We report here the isolation and characterization of suppressor mutants from seven strains that each have a single rrn operon (rrnO, A, J, I, E, D or B). The suppressor mutants for strain RIK656 with a single rrnO operon had a higher frequency of larger colonies. These suppressor mutants had not only increased growth rates, but also increased sporulation frequencies and ribosome levels compared to the parental mutant strain RIK656. Quantitative PCR analyses showed that all these suppressor mutants had an increased number of copies of the rrnO operon. Suppressor mutants were also isolated from the six other strains with single rrn operons (rrnA, J, I, E, D or B). Next generation and capillary sequencing showed that all of the suppressor mutants had tandem repeats of the chromosomal locus containing the remaining rrn operon (amplicon). These amplicons varied in size from approximately 9 to 179 kb. The amplifications were likely to be initiated by illegitimate recombination between non- or micro-homologous sequences, followed by unequal crossing-over during DNA replication. These results are consistent with our previous report that rrn operon copy number has a major role in cellular processes such as cell growth and sporulation.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Amplificação de Genes , Regulação Bacteriana da Expressão Gênica , Mutação , Óperon , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Dosagem de Genes , Dados de Sequência Molecular , Ribossomos/genética , Ribossomos/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
2.
Microbiology (Reading) ; 159(Pt 11): 2225-2236, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23970567

RESUMO

The number of copies of rRNA (rrn) operons in a bacterial genome differs greatly among bacterial species. Here we examined the phenotypic effects of variations in the number of copies of rRNA genes in the genome of Bacillus subtilis by analysis of eight mutant strains constructed to carry from two to nine copies of the rrn operon. We found that a decrease in the number of copies from ten to one increased the doubling time, and decreased the sporulation frequency and motility. The maximum levels for transformation activity were similar among the strains, although the competence development was significantly delayed in the strain with a single rrn operon. Normal sporulation only occurred if more than four copies of the rrn operon were present, although ten copies were needed for vegetative growth after germination of the spores. This behaviour was seen even though the intracellular level of ribosomes was similar among strains with four to ten copies of the rrn operon. Furthermore, ten copies of the rrn operon were needed for the highest swarming activity. We also constructed 21 strains that carried all possible combinations of two copies of the rrn operons, and found that these showed a range of growth rates and sporulation frequencies that all fell between those recorded for strains with one or three copies of the rrn operon. The results suggested that the copy number of the rrn operon has a major influence on cellular processes such as growth rate and sporulation frequency.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Óperon de RNAr , Bacillus subtilis/fisiologia , Divisão Celular , Competência de Transformação por DNA , Dosagem de Genes , Genes Essenciais , Locomoção , Mutação , Esporos Bacterianos/fisiologia , Transformação Bacteriana
3.
Microbiology (Reading) ; 156(Pt 10): 2944-2952, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20634236

RESUMO

The number of copies of rRNA genes in bacterial genomes differs greatly among bacterial species. It is difficult to determine the functional significance of the heterogeneity of each rRNA operon fully due to the existence of multiple rRNA operons and because the sequence heterogeneity among the rRNA genes is extremely low. To overcome this problem, we sequentially deleted the ten rrn operons of Bacillus subtilis and constructed seven mutant strains that each harboured a single rrn operon (either rrnA, B, D, E, I, J or O) in their genome. The growth rates and sporulation frequencies of these mutants were reduced drastically compared with those of the wild-type strain, and this was probably due to decreased levels of ribosomes in the mutants. Interestingly, the ability to sporulate varied significantly among the mutant strains. These mutants have proved to be invaluable in our initial attempts to reveal the functional significance of the heterogeneity of each rRNA operon.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Óperon de RNAr , Bacillus subtilis/fisiologia , Deleção de Genes , Dosagem de Genes , Mutação , Ribossomos/genética , Esporos Bacterianos/crescimento & desenvolvimento
4.
J Bacteriol ; 191(14): 4555-61, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19447912

RESUMO

In Bacillus subtilis a null mutation of the relA gene, whose gene product is involved in the synthesis and/or hydrolysis of (p)ppGpp, causes a growth defect that can be suppressed by mutation(s) of yjbM and/or ywaC coding for small (p)ppGpp synthetases. All 35 suppressor mutations newly isolated were classified into two groups, either yjbM or ywaC, by mapping and sequencing their mutations, suggesting that there are no (p)ppGpp synthetases other than RelA, YjbM, and YwaC in B. subtilis. In order to understand better the relation between RelA and rRNA synthesis, we studied in the relA mutant the transcriptional regulation of seven rRNA operons (rrnO, -A, -J, -I, -E, -D, or -B) individually after integration of a promoter- and terminatorless cat gene. We identified the transcriptional start sites of each rrn operon (a G) and found that transcription of all rrn operons from their P1 promoters was drastically reduced in the relA mutant while this was almost completely restored in the relA yjbM ywaC triple mutant. Taken together with previous results showing that the intracellular GTP concentration was reduced in the relA mutant while it was restored in the triple mutant, it seems likely that continuous (p)ppGpp synthesis by YjbM and/or YwaC at a basal level causes a decrease in the amounts of intracellular GTP.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Ligases/genética , RNA Ribossômico/biossíntese , Transcrição Gênica , Óperon de RNAr , Sequência de Bases , Cloranfenicol O-Acetiltransferase/biossíntese , Cloranfenicol O-Acetiltransferase/genética , Deleção de Genes , Genes Reporter , Genes de RNAr , Guanosina Pentafosfato/metabolismo , Dados de Sequência Molecular , Óperon , Supressão Genética , Sítio de Iniciação de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA