Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(8): 230762, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37650064

RESUMO

Structural components designed to absorb energy and shield a more valuable structure ideally require mechanical properties that combine a relatively high load-carrying capacity followed by a practically zero stiffness. This ensures that a specified energy quantity may be absorbed within a limited displacement and that any stress transfer to the valuable structure is minimized. Material damage has been historically mobilized to provide such properties, but this obviously renders such components to be single-use. By contrast, mobilization of elastic instability can also provide the desired combination of properties but without necessarily damaging the material. This reveals an intriguing possibility of such components being potentially repairable and theoretically re-usable with no significant loss in performance. A series of analytical, finite-element and experimental studies are presented for a bespoke mechanical metamaterial arrangement that is designed to buckle sequentially and behave with the desired 'high strength-low stiffness' characteristic. It is found that the various axial and rotational stiffnesses associated with the geometric arrangement and its constituent connections may be tuned to provide the desired mechanical behaviour within the elastic range and delay the onset of significant damage, thereby rendering the concept of harnessing instability to be feasible.

2.
Philos Trans A Math Phys Eng Sci ; 381(2244): 20220033, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774962

RESUMO

Prestressed stayed columns (PSCs) are structural systems whose compressive load-carrying capacity is enhanced through pre-tensioned cable stays. Much research has demonstrated that PSCs buckle subcritically when their prestressing levels maximize the critical buckling load of the theoretically perfect arrangement. Erosion of the pre-tensioned cables' effectiveness (e.g. through creep or corrosion) can thus lead to sudden collapse. The present goal is to develop a structural health monitoring (SHM) technique for in-service PSCs that returns the current structural utilization factor based on selected probing measurements. Hence, PSCs with different cable erosion and varying compression levels are probed in the pre-buckling range within the numerical setting through a nonlinear finite element (FE) model. In contrast to the previous work, it is found presently that the initial lateral stiffness from probing a PSC provides a suitable health index for in-service structures. A machine learning-based surrogate is trained on simulated data of the loading factor, cable erosion and probing indices; it is then used as a predictive tool to return the current utilization factor for PSCs alongside the level of cable erosion given probing measurements, showing excellent accuracy and thus provides confidence that an SHM technique based on probing is indeed feasible. This article is part of the theme issue 'Probing and dynamics of shock sensitive shells'.

3.
Data Brief ; 46: 108857, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36624769

RESUMO

The data available in this article include 3D mechanical designs used for the computer-aided fabrication of metal honeycombs produced by additive manufacturing and studied in [1]. In addition, the force-displacement data utilized to evaluate the mechanical performance of the metal used in this study are available via the digital image correlation technique. Further, the surface features obtained using 3D scanning microscopy of the fabricated parts are available as raw files and processed data. Finally, the impact test data are presented as high-frame-rate videos showing the time-displacement numerical values. This information has been provided in this data article to complement the related research, serve as a guide for future studies, and ensure the data's repeatability and reliability of the related research paper. The research article [1] investigates the mechanical performance and failure mechanism of additively manufactured metallic honeycombs under various scenarios, from quasi-static to dynamic loading. It also investigates the design optimization of these energy-absorbing hollow structures by comparing hollow structures made of three distinct novel cell designs (triangular, diamond-shaped, and diamond-shaped with curved walls) with traditional honeycombs made of hexagonal cells.

4.
S Afr Med J ; 111(9): 13348, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34949242

RESUMO

Letter by Omar on letter by Jassat et al. (Jassat W, Brey Z, Parker S, et al. A call to action: Temporal trends of COVID-19 deaths in the South African Muslim community. S Afr Med J 2021;111(8):692-694. https://doi.org/10.7196/SAMJ.2021.v111i8.15878); and response by Jassat et al.


Assuntos
COVID-19 , População Negra , Humanos , Islamismo , SARS-CoV-2 , África do Sul
6.
Proc Math Phys Eng Sci ; 473(2207): 20170583, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29225506

RESUMO

A variational model that describes the interactive buckling of a thin-walled equal-leg angle strut under pure axial compression is presented. A formulation combining the Rayleigh-Ritz method and continuous displacement functions is used to derive a system of differential and integral equilibrium equations for the structural component. Solving the equations using numerical continuation reveals progressive cellular buckling (or snaking) arising from the nonlinear interaction between the weak-axis flexural buckling mode and the strong-axis flexural-torsional buckling mode for the first time-the resulting behaviour being highly unstable. Physical experiments conducted on 10 cold-formed steel specimens are presented and the results show good agreement with the variational model.

7.
Proc Math Phys Eng Sci ; 472(2193): 20160504, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27713665

RESUMO

A model is proposed based on a Fourier series method to analyse the interactive bending wrinkling behaviour of inflated beams. The whole wrinkling evolution is tracked and divided into three stages by identifying the bifurcations of the equilibrium path. The critical wrinkling and failure moments of the inflated beam can then be predicted. The global-local interactive buckling pattern is elucidated by the proposed theoretical model and also verified by non-contact experimental tests. The effects of geometric parameters, internal pressure and boundary conditions on the buckling of inflated beams are investigated finally. The results reveal that the interactive buckling characteristics of an inflated beam under bending are more sensitive to the dimensions of the structure and boundary conditions. We find that for beams which are simply supported at both ends or clamped and simply supported, boundary conditions may prevent the wrinkling formation. The results provide significant support for our understanding of the bending wrinkling behaviour of inflated beams.

8.
R Soc Open Sci ; 2(4): 150038, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26064642

RESUMO

The peak and critical state strengths of sands are linearly related to the stress level, just as the frictional resistance to sliding along an interface is related to the normal force. The analogy with frictional sliding has led to the use of a 'friction angle' to describe the relationship between strength and stress for soils. The term 'friction angle' implies that the underlying mechanism is frictional resistance at the particle contacts. However, experiments and discrete element simulations indicate that the material friction angle is not simply related to the friction angle at the particle contacts. Experiments and particle-scale simulations of model sands have also revealed the presence of strong force chains, aligned with the major principal stress. Buckling of these strong force chains has been proposed as an alternative to the frictional-sliding failure mechanism. Here, using an idealized abstraction of a strong force chain, the resistance is shown to be linearly proportional to the magnitude of the lateral forces supporting the force chain. Considering a triaxial stress state, and drawing an analogy between the lateral forces and the confining pressure in a triaxial test, a linear relationship between stress level and strength is seen to emerge from the failure-by-buckling hypothesis.

9.
Proc Math Phys Eng Sci ; 471(2173): 20140695, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25568620

RESUMO

Compression of a stiff film on a soft substrate may lead to surface wrinkling when the compressive strain reaches a critical value. Further compression may cause a wrinkling-folding transition, and the sinusoidal wrinkling mode can then give way to a period-doubling bifurcation. The onset of the primary bifurcation has been well understood, but a quantitative understanding of the secondary bifurcation remains elusive. Our theoretical analysis of the branching of surface patterns reveals that the wrinkling-folding transition depends on the wrinkling strain and the prestrain in the substrate. A characteristic strain in the substrate is adopted to determine the correlation among the critical strain of the period-doubling mode, the wrinkling strain and the prestrain in an explicit form. A careful examination of the total potential energy of the system reveals that beyond the critical strain of period-doubling, the sinusoidal wrinkling mode has a higher potential energy in comparison with the period-doubling mode. The critical strain of the period-doubling mode strongly depends on the deformation state of the hyperelastic solid, indicating that the nonlinear deformation behaviour of the substrate plays a key role here. The results reported here on the one hand provide a quantitative understanding of the wrinkling-folding transition observed in natural and synthetic material systems and on the other hand pave the way to control the wrinkling mode transition by regulating the strain state in the substrate.

10.
Philos Trans A Math Phys Eng Sci ; 370(1965): 1827-49, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22431759

RESUMO

An analytical model founded on geometric and potential energy principles for kink band deformation in laminated composite struts is presented. It is adapted from an earlier successful study on confined layered structures that was formulated to model kink band formation in the folding of geological layers. This study's principal aim was to explore the underlying mechanisms governing the kinking response of flat, laminated components comprising unidirectional composite laminae. A pilot parametric study indicates that the key features of the mechanical response are captured well and that quantitative comparisons with experiments presented in the literature are highly encouraging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA