Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
2.
Cell Rep ; 42(4): 112365, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37018075

RESUMO

Stem cell transplantation presents a potentially curative strategy for genetic disorders of skeletal muscle, but this approach is limited by the deleterious effects of cell expansion in vitro and consequent poor engraftment efficiency. In an effort to overcome this limitation, we sought to identify molecular signals that enhance the myogenic activity of cultured muscle progenitors. Here, we report the development and application of a cross-species small-molecule screening platform employing zebrafish and mice, which enables rapid, direct evaluation of the effects of chemical compounds on the engraftment of transplanted muscle precursor cells. Using this system, we screened a library of bioactive lipids to discriminate those that could increase myogenic engraftment in vivo in zebrafish and mice. This effort identified two lipids, lysophosphatidic acid and niflumic acid, both linked to the activation of intracellular calcium-ion flux, which showed conserved, dose-dependent, and synergistic effects in promoting muscle engraftment across these vertebrate species.


Assuntos
Células Satélites de Músculo Esquelético , Peixe-Zebra , Camundongos , Animais , Músculo Esquelético/fisiologia , Transplante de Células-Tronco , Lipídeos/farmacologia , Diferenciação Celular , Desenvolvimento Muscular
3.
Nat Aging ; 3(3): 327-345, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118429

RESUMO

Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains after parabiosis. For each cell type, we cataloged alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions and senescence status. Our analyses identified gene signatures, demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest new strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.


Assuntos
Células Endoteliais , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Envelhecimento/genética , Parabiose , Encéfalo
4.
Elife ; 122023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971355

RESUMO

The development of tools to manipulate the mouse genome, including knockout and transgenic technology, has revolutionized our ability to explore gene function in mammals. Moreover, for genes that are expressed in multiple tissues or at multiple stages of development, the use of tissue-specific expression of the Cre recombinase allows gene function to be perturbed in specific cell types and/or at specific times. However, it is well known that putative tissue-specific promoters often drive unanticipated 'off-target' expression. In our efforts to explore the biology of the male reproductive tract, we unexpectedly found that expression of Cre in the central nervous system resulted in recombination in the epididymis, a tissue where sperm mature for ~1-2 weeks following the completion of testicular development. Remarkably, we not only observed reporter expression in the epididymis when Cre expression was driven from neuron-specific transgenes, but also when Cre expression in the brain was induced from an AAV vector carrying a Cre expression construct. A surprisingly wide range of Cre drivers - including six different neuronal promoters as well as the adipose-specific Adipoq Cre promoter - exhibited off-target recombination in the epididymis, with a subset of drivers also exhibiting unexpected activity in other tissues such as the reproductive accessory glands. Using a combination of parabiosis and serum transfer experiments, we find evidence supporting the hypothesis that Cre may be trafficked from its cell of origin to the epididymis through the circulatory system. Together, our findings should motivate caution when interpreting conditional alleles, and suggest the exciting possibility of inter-tissue RNA or protein trafficking in modulation of reproductive biology.


Assuntos
RNA , Sêmen , Camundongos , Masculino , Animais , Camundongos Transgênicos , RNA/metabolismo , Sêmen/metabolismo , Integrases/genética , Integrases/metabolismo , Regiões Promotoras Genéticas , Transporte Proteico , Mamíferos/genética
5.
Life Sci Alliance ; 6(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36631218

RESUMO

Growth differentiation factor 11 (GDF11) and GDF8 (MSTN) are closely related TGF-ß family proteins that interact with nearly identical signaling receptors and antagonists. However, GDF11 appears to activate SMAD2/3 more potently than GDF8 in vitro and in vivo. The ligands possess divergent structural properties, whereby substituting unique GDF11 amino acids into GDF8 enhanced the activity of the resulting chimeric GDF8. We investigated potentially distinct endogenous activities of GDF11 and GDF8 in vivo by genetically modifying their mature signaling domains. Full recoding of GDF8 to that of GDF11 yielded mice lacking GDF8, with GDF11 levels ∼50-fold higher than normal, and exhibiting modestly decreased muscle mass, with no apparent negative impacts on health or survival. Substitution of two specific amino acids in the fingertip region of GDF11 with the corresponding GDF8 residues resulted in prenatal axial skeletal transformations, consistent with Gdf11-deficient mice, without apparent perturbation of skeletal or cardiac muscle development or homeostasis. These experiments uncover distinctive features between the GDF11 and GDF8 mature domains in vivo and identify a specific requirement for GDF11 in early-stage skeletal development.


Assuntos
Desenvolvimento Ósseo , Fatores de Diferenciação de Crescimento , Músculo Esquelético , Miostatina , Animais , Feminino , Camundongos , Gravidez , Aminoácidos/química , Aminoácidos/genética , Desenvolvimento Ósseo/genética , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/química , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Miostatina/genética , Miostatina/química , Fator de Crescimento Transformador beta/metabolismo
6.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638792

RESUMO

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Assuntos
Envelhecimento , Epigênese Genética , Animais , Envelhecimento/genética , Metilação de DNA , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genética
7.
Mol Ther Methods Clin Dev ; 28: 146-159, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36654797

RESUMO

The adeno-associated viral vector (AAV) provides a safe and efficient gene therapy platform with several approved products that have marked therapeutic impact for patients. However, a major bottleneck in the development and commercialization of AAV remains the efficiency, cost, and scalability of AAV production. Chromatographic methods have the potential to allow purification at increased scales and lower cost but often require optimization specific to each serotype. Here, we demonstrate that the POROS CaptureSelect AAVX affinity resin efficiently captures a panel of 15 divergent AAV serotypes, including the commonly used AAV2, AAV8, AAV9, PHP.B, and Anc80. We also find that AAVX resin can be regenerated repeatedly without loss of efficiency or carry-over contamination. While AAV preps purified with AAVX showed a higher fraction of empty capsids than preps purified using iodixanol ultracentrifugation, the potency of the AAVX purified vectors was comparable with that of iodixanol purified vectors both in vitro and in vivo. Finally, optimization of the purification protocol resulted in a process with an overall efficiency of 65%-80% across all scales and AAV serotypes tested. These data establish AAVX affinity chromatography as a versatile and efficient method for purification of a broad range of AAV serotypes.

8.
J Cardiovasc Aging ; 3(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38235060

RESUMO

Since the exogenous administration of GDF11, a TGF-ß superfamily member, was reported to have beneficial effects in some models of human disease, there have been many research studies in GDF11 biology. However, many studies have now confirmed that exogenous administration of GDF11 can improve physiology in disease models, including cardiac fibrosis, experimental stroke, and disordered metabolism. GDF11 is similar to GDF8 (also called Myostatin), differing only by 11 amino acids in their mature signaling domains. These two proteins are now known to be biochemically different both in vitro and in vivo. GDF11 is much more potent than GDF8 and induces more strongly SMAD2 phosphorylation in the myocardium compared to GDF8. GDF8 and GDF11 prodomain are only 52% identical and are cleaved by different Tolloid proteases to liberate the mature signaling domain from inhibition of the prodomain. Here, we review the state of GDF11 biology, highlighting both resolved and remaining controversies.

9.
Cell Rep Med ; 3(11): 100803, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327973

RESUMO

Gene therapy is emerging as a modality in 21st-century medicine. Adeno-associated viral (AAV) gene transfer is a leading technology to achieve efficient and durable expression of a therapeutic transgene. However, the structural complexity of the capsid has constrained efforts to engineer the particle toward improved clinical safety and efficacy. Here, we generate a curated library of barcoded AAVs with mutations across a variety of functionally relevant motifs. We then screen this library in vitro and in vivo in mice and nonhuman primates, enabling a broad, multiparametric assessment of every vector within the library. Among the results, we note a single residue that modulates liver transduction across all interrogated models while preserving transduction in heart and skeletal muscles. Moreover, we find that this mutation can be grafted into AAV9 and leads to profound liver detargeting while retaining muscle transduction-a finding potentially relevant to preventing hepatoxicities seen in clinical studies.


Assuntos
Capsídeo , Vetores Genéticos , Animais , Camundongos , Capsídeo/metabolismo , Vetores Genéticos/genética , Dependovirus/genética , Proteínas do Capsídeo/genética , Fígado/metabolismo
10.
Skelet Muscle ; 12(1): 20, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35971133

RESUMO

BACKGROUND: The AP-1 transcription factor, FBJ osteosarcoma oncogene (FOS), is induced in adult muscle satellite cells (SCs) within hours following muscle damage and is required for effective stem cell activation and muscle repair. However, why FOS is rapidly downregulated before SCs enter cell cycle as progenitor cells (i.e., transiently expressed) remains unclear. Further, whether boosting FOS levels in the proliferating progeny of SCs can enhance their myogenic properties needs further evaluation. METHODS: We established an inducible, FOS expression system to evaluate the impact of persistent FOS activity in muscle progenitor cells ex vivo. We performed various assays to measure cellular proliferation and differentiation, as well as uncover changes in RNA levels and three-dimensional (3D) chromatin interactions. RESULTS: Persistent FOS activity in primary muscle progenitor cells severely antagonizes their ability to differentiate and form myotubes within the first 2 weeks in culture. RNA-seq analysis revealed that ectopic FOS activity in muscle progenitor cells suppressed a global pro-myogenic transcriptional program, while activating a stress-induced, mitogen-activated protein kinase (MAPK) transcriptional signature. Additionally, we observed various FOS-dependent, chromosomal re-organization events in A/B compartments, topologically associated domains (TADs), and genomic loops near FOS-regulated genes. CONCLUSIONS: Our results suggest that elevated FOS activity in recently activated muscle progenitor cells perturbs cellular differentiation by altering the 3D chromosome organization near critical pro-myogenic genes. This work highlights the crucial importance of tightly controlling FOS expression in the muscle lineage and suggests that in states of chronic stress or disease, persistent FOS activity in muscle precursor cells may disrupt the muscle-forming process.


Assuntos
Desenvolvimento Muscular , Mioblastos , Diferenciação Celular/fisiologia , Cromatina/genética , Fibras Musculares Esqueléticas , Células-Tronco
11.
Cell ; 184(19): 4919-4938.e22, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34506722

RESUMO

Replacing or editing disease-causing mutations holds great promise for treating many human diseases. Yet, delivering therapeutic genetic modifiers to specific cells in vivo has been challenging, particularly in large, anatomically distributed tissues such as skeletal muscle. Here, we establish an in vivo strategy to evolve and stringently select capsid variants of adeno-associated viruses (AAVs) that enable potent delivery to desired tissues. Using this method, we identify a class of RGD motif-containing capsids that transduces muscle with superior efficiency and selectivity after intravenous injection in mice and non-human primates. We demonstrate substantially enhanced potency and therapeutic efficacy of these engineered vectors compared to naturally occurring AAV capsids in two mouse models of genetic muscle disease. The top capsid variants from our selection approach show conserved potency for delivery across a variety of inbred mouse strains, and in cynomolgus macaques and human primary myotubes, with transduction dependent on target cell expressed integrin heterodimers.


Assuntos
Capsídeo/metabolismo , Dependovirus/metabolismo , Evolução Molecular Direcionada , Técnicas de Transferência de Genes , Músculo Esquelético/metabolismo , Sequência de Aminoácidos , Animais , Capsídeo/química , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Integrinas/metabolismo , Macaca fascicularis , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/terapia , Multimerização Proteica , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/uso terapêutico , RNA Guia de Cinetoplastídeos/metabolismo , Recombinação Genética/genética , Especificidade da Espécie , Transgenes
12.
Genes Dev ; 35(17-18): 1209-1228, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34413137

RESUMO

The generation of myotubes from fibroblasts upon forced MyoD expression is a classic example of transcription factor-induced reprogramming. We recently discovered that additional modulation of signaling pathways with small molecules facilitates reprogramming to more primitive induced myogenic progenitor cells (iMPCs). Here, we dissected the transcriptional and epigenetic dynamics of mouse fibroblasts undergoing reprogramming to either myotubes or iMPCs using a MyoD-inducible transgenic model. Induction of MyoD in fibroblasts combined with small molecules generated Pax7+ iMPCs with high similarity to primary muscle stem cells. Analysis of intermediate stages of iMPC induction revealed that extinction of the fibroblast program preceded induction of the stem cell program. Moreover, key stem cell genes gained chromatin accessibility prior to their transcriptional activation, and these regions exhibited a marked loss of DNA methylation dependent on the Tet enzymes. In contrast, myotube generation was associated with few methylation changes, incomplete and unstable reprogramming, and an insensitivity to Tet depletion. Finally, we showed that MyoD's ability to bind to unique bHLH targets was crucial for generating iMPCs but dispensable for generating myotubes. Collectively, our analyses elucidate the role of MyoD in myogenic reprogramming and derive general principles by which transcription factors and signaling pathways cooperate to rewire cell identity.


Assuntos
Desenvolvimento Muscular , Proteína MyoD , Animais , Diferenciação Celular/genética , Camundongos , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas , Músculo Esquelético , Proteína MyoD/genética , Proteína MyoD/metabolismo , Mioblastos/metabolismo , Células-Tronco/metabolismo
13.
Life Sci Alliance ; 4(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34187933

RESUMO

Rhabdomyosarcomas (RMS) are phenotypically and functionally heterogeneous. Both primary human RMS cultures and low-passage Myf6Cre,Pax3:Foxo1,p53 mouse RMS cell lines, which express the fusion oncoprotein Pax3:Foxo1 and lack the tumor suppressor Tp53 (Myf6Cre,Pax3:Foxo1,p53), exhibit marked heterogeneity in PAX3:FOXO1 (P3F) expression at the single cell level. In mouse RMS cells, P3F expression is directed by the Pax3 promoter and coupled to eYFP YFPlow/P3Flow mouse RMS cells included 87% G0/G1 cells and reorganized their actin cytoskeleton to produce a cellular phenotype characterized by more efficient adhesion and migration. This translated into higher tumor-propagating cell frequencies of YFPlow/P3Flow compared with YFPhigh/P3Fhigh cells. Both YFPlow/P3Flow and YFPhigh/P3Fhigh cells gave rise to mixed clones in vitro, consistent with fluctuations in P3F expression over time. Exposure to the anti-tropomyosin compound TR100 disrupted the cytoskeleton and reversed enhanced migration and adhesion of YFPlow/P3Flow RMS cells. Heterogeneous expression of PAX3:FOXO1 at the single cell level may provide a critical advantage during tumor progression.


Assuntos
Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Rabdomiossarcoma/etiologia , Animais , Apoptose/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Biologia Computacional/métodos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Anotação de Sequência Molecular , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Análise de Célula Única
14.
Cell Rep ; 34(4): 108656, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503437

RESUMO

Muscle satellite cells (SCs) are a quiescent (non-proliferative) stem cell population in uninjured skeletal muscle. Although SCs have been investigated for nearly 60 years, the molecular drivers that transform quiescent SCs into the rapidly dividing (activated) stem/progenitor cells that mediate muscle repair after injury remain largely unknown. Here we identify a prominent FBJ osteosarcoma oncogene (Fos) mRNA and protein signature in recently activated SCs that is rapidly, heterogeneously, and transiently induced by muscle damage. We further reveal a requirement for FOS to efficiently initiate key stem cell functions, including cell cycle entry, proliferative expansion, and muscle regeneration, via induction of "pro-regenerative" target genes that stimulate cell migration, division, and differentiation. Disruption of one of these Fos/AP-1 targets, NAD(+)-consuming mono-ADP-ribosyl-transferase 1 (Art1), in SCs delays cell cycle entry and impedes progenitor cell expansion and muscle regeneration. This work uncovers an early-activated FOS/ART1/mono-ADP-ribosylation (MARylation) pathway that is essential for stem cell-regenerative responses.


Assuntos
Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Genes fos , Camundongos
15.
FASEB J ; 34(12): 16086-16104, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33064329

RESUMO

The ability of skeletal muscle to regenerate declines significantly with aging. The expression of aryl hydrocarbon receptor nuclear translocator (ARNT), a critical component of the hypoxia signaling pathway, was less abundant in skeletal muscle of old (23-25 months old) mice. This loss of ARNT was associated with decreased levels of Notch1 intracellular domain (N1ICD) and impaired regenerative response to injury in comparison to young (2-3 months old) mice. Knockdown of ARNT in a primary muscle cell line impaired differentiation in vitro. Skeletal muscle-specific ARNT deletion in young mice resulted in decreased levels of whole muscle N1ICD and limited muscle regeneration. Administration of a systemic hypoxia pathway activator (ML228), which simulates the actions of ARNT, rescued skeletal muscle regeneration in both old and ARNT-deleted mice. These results suggest that the loss of ARNT in skeletal muscle is partially responsible for diminished myogenic potential in aging and activation of hypoxia signaling holds promise for rescuing regenerative activity in old muscle.


Assuntos
Envelhecimento/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Hipóxia/metabolismo , Hipóxia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular/fisiologia , Transdução de Sinais/fisiologia
16.
Skelet Muscle ; 10(1): 28, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036659

RESUMO

Satellite cells are the canonical muscle stem cells that regenerate damaged skeletal muscle. Loss of function of these cells has been linked to reduced muscle repair capacity and compromised muscle health in acute muscle injury and congenital neuromuscular diseases. To identify new pathways that can prevent loss of skeletal muscle function or enhance regenerative potential, we established an imaging-based screen capable of identifying small molecules that promote the expansion of freshly isolated satellite cells. We found several classes of receptor tyrosine kinase (RTK) inhibitors that increased freshly isolated satellite cell numbers in vitro. Further exploration of one of these compounds, the RTK inhibitor CEP-701 (also known as lestaurtinib), revealed potent activity on mouse satellite cells both in vitro and in vivo. This expansion potential was not seen upon exposure of proliferating committed myoblasts or non-myogenic fibroblasts to CEP-701. When delivered subcutaneously to acutely injured animals, CEP-701 increased both the total number of satellite cells and the rate of muscle repair, as revealed by an increased cross-sectional area of regenerating fibers. Moreover, freshly isolated satellite cells expanded ex vivo in the presence of CEP-701 displayed enhanced muscle engraftment potential upon in vivo transplantation. We provide compelling evidence that certain RTKs, and in particular RET, regulate satellite cell expansion during muscle regeneration. This study demonstrates the power of small molecule screens of even rare adult stem cell populations for identifying stem cell-targeting compounds with therapeutic potential.


Assuntos
Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Desenvolvimento Muscular , Inibidores de Proteínas Quinases/farmacologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Carbazóis/farmacologia , Proliferação de Células , Células Cultivadas , Furanos/farmacologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Regeneração , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia
17.
PLoS One ; 15(9): e0238572, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32898143

RESUMO

Functional genomic screening of KRAS-driven mouse sarcomas was previously employed to identify proliferation-relevant genes. Genes identified included Ubiquitin-conjugating enzyme E2 (Ube2c), Centromere Protein E (Cenpe), Hyaluronan Synthase 2 (Has2), and CAMP Responsive Element Binding Protein 3 Like 2 (Creb3l2). This study examines the expression and chemical inhibition of these candidate genes, identifying variable levels of protein expression and significant contributions to rhabdomyosarcoma (RMS) cell proliferation. Chemical treatment of human and murine RMS cell lines with bortezomib, UA62784, latrunculin A and sorafenib inhibited growth with approximate EC50 concentrations of 15-30nM for bortezomib, 25-80nM for UA62784 and 80-220nM for latrunculin A. The multi-kinase inhibitor sorafenib increased in vitro proliferation of 4 of 6 sarcoma cell lines tested. Latrunculin A was further associated with disruption of the actin cytoskeleton and reduced ERK1/2 phosphorylation. Together, this work advances opportunities for developing therapies to block progression of soft-tissue sarcomas and demonstrates that disruption of the actin cytoskeleton in sarcoma cells by latrunculin A is associated with a reduction in RMS cell growth. (167 words).


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proliferação de Células/efeitos dos fármacos , Rabdomiossarcoma/tratamento farmacológico , Tiazolidinas/farmacologia , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/patologia , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia
18.
iScience ; 23(9): 101521, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32927265

RESUMO

Increased consumption of fats and added sugars has been associated with an increase in metabolic syndromes. Here we show that mice chronically fed an energy-rich diet (ERD) with high fat and moderate sucrose have enhanced the absorption of a gastrointestinal fructose load, and this required expression of the arrestin domain protein Txnip in the intestinal epithelial cells. ERD feeding induced gene and protein expression of Glut5, and this required the expression of Txnip. Furthermore, Txnip interacted with Rab11a, a small GTPase that facilitates the apical localization of Glut5. We also demonstrate that ERD promoted Txnip/Glut5 complexes in the apical intestinal epithelial cell. Our findings demonstrate that ERD facilitates fructose absorption through a Txnip-dependent mechanism in the intestinal epithelial cell, suggesting that increased fructose absorption could potentially provide a mechanism for worsening of metabolic syndromes in the setting of a chronic ERD.

19.
Sci Rep ; 10(1): 4561, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165710

RESUMO

Insulin resistance is associated with aging in mice and humans. We have previously shown that administration of recombinant GDF11 (rGDF11) to aged mice alters aging phenotypes in the brain, skeletal muscle, and heart. While the closely related protein GDF8 has a role in metabolism, limited data are available on the potential metabolic effects of GDF11 or GDF8 in aging. To determine the metabolic effects of these two ligands, we administered rGDF11 or rGDF8 protein to young or aged mice fed a standard chow diet, short-term high-fat diet (HFD), or long-term HFD. Under nearly all of these diet conditions, administration of exogenous rGDF11 reduced body weight by 3-17% and significantly improved glucose tolerance in aged mice fed a chow (~30% vs. saline) or HF (~50% vs. saline) diet and young mice fed a HFD (~30%). On the other hand, exogenous rGDF8 showed signifcantly lesser effect or no effect at all on glucose tolerance compared to rGDF11, consistent with data demonstrating that GFD11 is a more potent signaling ligand than GDF8. Collectively, our results show that administration of exogenous rGDF11, but not rGDF8, can reduce diet-induced weight gain and improve metabolic homeostasis.


Assuntos
Envelhecimento/metabolismo , Peso Corporal/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Miostatina/administração & dosagem , Envelhecimento/sangue , Envelhecimento/efeitos dos fármacos , Animais , Proteínas Morfogenéticas Ósseas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Fatores de Diferenciação de Crescimento/administração & dosagem , Fatores de Diferenciação de Crescimento/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miostatina/farmacologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos
20.
Sci Rep ; 9(1): 18613, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819086

RESUMO

Recent advances in CRISPR/Cas gene editing technology have significantly expanded the possibilities and accelerated the pace of creating genetically engineered animal models. However, CRISPR/Cas-based strategies designed to precisely edit the genome can often yield unintended outcomes. Here, we report the use of zygotic CRISPR/Cas9 injections to generate a knock-in GFP reporter mouse at the Gdf11 locus. Phenotypic and genomic characterization of founder animals from these injections revealed a subset that contained the correct targeting event and exhibited GFP expression that, within the hematopoietic system, was restricted predominantly to lymphoid cells. Yet, in another subset of founder mice, we detected aberrant integration events at the target site that dramatically and inaccurately shifted hematopoietic GFP expression from the lymphoid to the myeloid lineage. Additionally, we recovered multiple Gdf11 deletion alleles that modified the C-terminus of the GDF11 protein. When bred to homozygosity, most of these alleles recapitulated skeletal phenotypes reported previously for Gdf11 knockout mice, suggesting that these represent null alleles. However, we also recovered one Gdf11 deletion allele that encodes a novel GDF11 variant protein ("GDF11-WE") predicted to contain two additional amino acids (tryptophan (W) and glutamic acid (E)) at the C-terminus of the mature ligand. Unlike the other Gdf11 deletion alleles recovered in this study, homozygosity for the Gdf11WE allele did not phenocopy Gdf11 knockout skeletal phenotypes. Further investigation using in vivo and in vitro approaches demonstrated that GDF11-WE retains substantial physiological function, indicating that GDF11 can tolerate at least some modifications of its C-terminus and providing unexpected insights into its biochemical activities. Altogether, our study confirms that one-step zygotic injections of CRISPR/Cas gene editing complexes provide a quick and powerful tool to generate gene-modified mouse models. Moreover, our findings underscore the critical importance of thorough characterization and validation of any modified alleles generated by CRISPR, as unintended on-target effects that fail to be detected by simple PCR screening can produce substantially altered phenotypic readouts.


Assuntos
Alelos , Proteínas Morfogenéticas Ósseas/genética , Sistemas CRISPR-Cas , Deleção de Genes , Edição de Genes , Fatores de Diferenciação de Crescimento/genética , Animais , Feminino , Genes Reporter , Engenharia Genética , Genoma , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Homozigoto , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Células Mieloides/metabolismo , Fenótipo , Domínios Proteicos , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA