Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39103594

RESUMO

BACKGROUND: Empagliflozin (EMPA) is an SGLT2 inhibitor, a new class of anti-diabetic medication, indicated for treating type-2 diabetes. Its low permeability, poor solubility and bioavailability limits its use in management of diabetes. The study was aimed to formulate EMPA loaded polymeric micelles (PMs) to overcome these obstacles in oral absorption. METHODOLOGY: In silico studies-molecular docking, molecular dynamic simulation (MDS), and quantum chemical calculation were employed to study the interaction of EMPA with different polymers. EMPA loaded TPGS polymeric micelles (EMPA-TPGS-PMs) were formulated by direct dissolution method and characterized in terms of surface morphology, entrapment, particle size, in vitro drug release, and in vitro cytotoxicity (HEK293 cells). In vivo pharmacokinetic and pharmacodynamic studies were also performed. RESULTS: The results suggested a good interaction between TPGS and EMPA with lowest binding energy compared to other polymers. Further MDS results and DFT calculations validated the stable binding of the complex hence TPGS was selected for further wet lab experiments. The EMPA-TPGS complex displayed lower value of Total energy (T.E.) than its individual components, indicating the overall stability of the complex while, the energy band gap (∆E) value lied between the two individual molecules, signifying the better electron transfer between HOMO and LUMO of the complex. Based on the solubility, entrapment and cytotoxicity studies, 5% TPGS was selected for formulating drug loaded micelles. EMPA-TPGS5-PMs presented a size of 9.008 ± 1.25 nm, Polydispersity index (PDI) of 0.254 ± 0.100, a controlled release behaviour upto 24 h. SEM and AFM images of the nanoformulation suggested spherical particles whereas, DSC, and PXRD studies confirmed the loss of crystallinity of EMPA. A 3.12-folds higher AUC and a greater reduction in blood glucose levels was exhibited by EMPA-TPGS5-PMs in comparison to EMPA-SUSP in mice model. CONCLUSION: EMPA-TPGS-PMs has exhibited better bio absorption and therapeutic effectiveness in diabetes treatment. This improved performance would open the possibility of dose reduction, reduced dosing frequency & dose-related side effects, improving pharmaco-economics and thereby improved overall compliance to the patient. However, this translation from bench to bedside would necessitate studies in higher animals and human volunteers.

2.
Curr Drug Deliv ; 18(6): 805-824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32640955

RESUMO

BACKGROUND: Intranasal administration of biodegradable nanoparticles has been extensively studied for targeting the drug directly to CNS through the olfactory or trigeminal route bypassing the blood brain barrier. OBJECTIVE: The objective of the present study was to optimize Clonazepam loaded PLGA nanoparticles (CLO-PNPs) by investigating the effect of process variables on the responses using 32 full factorial design. METHODS: Effect of two independent factors-amount of PLGA and concentration of Poloxamer 188, were studied at low, medium, and high levels on three dependent responses-%Entrapment efficiency, Particle size (nm), and % cumulative drug release at 24hr. RESULTS: %EE, Particle size, and %CDR at 24hr of the optimized batch was 63.7%, 165.1 nm, and 86.96%, respectively. Nanoparticles were radiolabeled with 99mTc and biodistribution was investigated in BALB/c mice after intranasal and intravenous administrations. Significantly higher brain/blood uptake ratios and AUC values in the brain following intranasal administration of CLO-PNPs indicated more effective brain targeting of CLO. Higher brain uptake of intranasal CLO-PNPs was confirmed by rabbit brain scintigraphy imaging. A histopathological study performed on goat nasal mucosa revealed no adverse response of nanoparticles. TEM image exhibited spherical shaped particles in the nano range. DSC and XRD studies suggested Clonazepam encapsulation within the PLGA matrix. The onset of occurrence of PTZ-induced seizures in rats was significantly delayed by intranasal nanoparticles as compared to intranasal and intravenous CLO-SOL. CONCLUSION: This investigation exhibits rapid rate and higher extent of CLO transport in the brain with intranasal CLO-PNPs suggesting a better option as compared to oral and parenteral route in the management of acute status epilepticus.


Assuntos
Encéfalo , Clonazepam/administração & dosagem , Portadores de Fármacos , Nanopartículas , Administração Intranasal , Animais , Barreira Hematoencefálica , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Nasal/metabolismo , Tamanho da Partícula , Coelhos , Ratos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA