Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 452, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38199999

RESUMO

Temperature sensors are one of the most fundamental sensors and are found in industrial, environmental, and biomedical applications. The traditional approach of reading the resistive response of Positive Temperature Coefficient thermistors at DC hindered their adoption as wide-range temperature sensors. Here, we present a large-area thermistor, based on a flexible and stretchable short carbon fibre incorporated Polydimethylsiloxane composite, enabled by a radio frequency sensing interface. The radio frequency readout overcomes the decades-old sensing range limit of thermistors. The composite exhibits a resistance sensitivity over 1000 °C-1, while maintaining stability against bending (20,000 cycles) and stretching (1000 cycles). Leveraging its large-area processing, the anisotropic composite is used as a substrate for sub-6 GHz radio frequency components, where the thermistor-based microwave resonators achieve a wide temperature sensing range (30 to 205 °C) compared to reported flexible temperature sensors, and high sensitivity (3.2 MHz/°C) compared to radio frequency temperature sensors. Wireless sensing is demonstrated using a microstrip patch antenna based on a thermistor substrate, and a battery-less radio frequency identification tag. This radio frequency-based sensor readout technique could enable functional materials to be directly integrated in wireless sensing applications.

3.
IEEE Trans Biomed Circuits Syst ; 17(5): 900-915, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37204964

RESUMO

We present a wirelessly powered ultraviolet-C (UVC) radiation-based disinfecting bandage for sterilization and treatment in chronic wound care and management. The bandage contains embedded low-power UV light-emitting diodes (LEDs) in the 265 to 285 nm range with the light emission controlled via a microcontroller. An inductive coil is seamlessly concealed in the fabric bandage and coupled with a rectifier circuit to enable 6.78 MHz wireless power transfer (WPT). The maximum WPT efficiency of the coils is 83% in free space and 75% on the body at a coupling distance of 4.5 cm. Measurements show that the UVC LEDs are emitting radiant power of about 0.6 mW and 6.8 mW with and without fabric bandage, respectively, when wirelessly powered. The ability of the bandage to inactivate microorganisms was examined in a laboratory which shows that the system can effectively eradicate Gram-negative bacteria, Pseudoalteromonas sp. D41 strain, on surfaces in six hours. The proposed smart bandage system is low-cost, battery-free, flexible and can be easily mounted on the human body and, therefore, shows great promise for the treatment of persistent infections in chronic wound care.


Assuntos
Bandagens , Ferimentos e Lesões , Humanos , Ferimentos e Lesões/terapia , Raios Ultravioleta , Tecnologia sem Fio , Desinfecção
4.
Sensors (Basel) ; 22(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808279

RESUMO

Radio frequency identification (RFID) represents an emerging platform for passive RF-powered wireless sensing. Differential Multi-port RFID systems are widely used to enable multiple independent measurands to be gathered, or to overcome channel variations. This paper presents a dual-port/dual-integrated circuit (IC) RFID sensing tag based on a shared aperture dual-polarized microstrip antenna. The tag can be loaded with different sensors where the received signal strength indicator (RSSI) of one IC is modulated using a sensor, and the other acts as a measurand-insensitive reference, for differential sensing. The 868 MHz tag maintains a minimum unloaded read range of 14 m insensitive to deployment on metals or lossy objects, which represents the longest reported range of a multi-port RFID sensing tag. The tag is loaded with a light-dependent resistor (LDR) to demonstrate its functionality as a battery-less wireless RFID light sensor. Following detailed RF characterization of the LDR, it is shown that the impedance, and consequently the RSSI, of the sensing tag are modulated by changing the light intensity, whereas the reference port maintains a mostly unchanged response for a correlated channel. The proposed tag shows the potential for channel variations-tolerant differential RFID sensing platforms based on polarization-diversity antennas.

5.
Sensors (Basel) ; 20(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560570

RESUMO

This paper details the design, fabrication and testing of flexible textile-concealed Radio Frequency Identification (RFID) tags for wearable applications in a smart city/smart building environment. The proposed tag designs aim to reduce the overall footprint, enabling textile integration whilst maintaining the read range. The proposed RFID filament is less than 3.5 mm in width and 100 mm in length. The tag is based on an electrically small (0.0033 λ 2 ) high-impedance planar dipole antenna with a tuning loop, maintaining a reflection coefficient less than -21 dB at 915 MHz, when matched to a commercial RFID chip mounted alongside the antenna. The antenna strip and the RFID chip are then encapsulated and integrated in a standard woven textile for wearable applications. The flexible antenna filament demonstrates a 1.8 dBi gain which shows a close agreement with the analytically calculated and numerically simulated gains. The range of the fabricated tags has been measured and a maximum read range of 8.2 m was recorded at 868 MHz Moreover, the tag's maximum calculated range at 915 MHz is 18 m, which is much longer than the commercially available laundry tags of larger length and width, such as Invengo RFID tags. The reliability of the proposed RFID tags has been investigated using a series of tests replicating textile-based use case scenarios which demonstrates its suitability for practical deployment. Washing tests have shown that the textile-integrated encapsulated tags can be read after over 32 washing cycles, and that multiple tags can be read simultaneously while being washed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA