Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Int ; 13(3): 343-358, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34449689

RESUMO

PURPOSE OF REVIEW: This is a comprehensive review of the literature regarding the use of paliperidone in the treatment of schizophrenia and schizoaffective disorder. It covers the background and presentation of schizophrenia and schizoaffective disorder, as well as the mechanism of action and drug information for paliperidone. It covers the existing evidence of the use of paliperidone for the treatment of schizophrenia and schizoaffective disorder. RECENT FINDINGS: Schizophrenia and schizoaffective disorder lead to significant cognitive impairment. It is thought that dopamine dysregulation is the culprit for the positive symptoms of schizophrenia and schizoaffective disorder. Similar to other second-generation antipsychotics, paliperidone has affinity for dopamine D2 and serotonin 5-HT2A receptors. Paliperidone was granted approval in the United States in 2006 to be used in the treatment of schizophrenia and in 2009 for schizoaffective disorder. SUMMARY: Schizophrenia and schizoaffective disorder have a large impact on cognitive impairment, positive symptoms and negative symptoms. Patients with either of these mental illnesses suffer from impairments in everyday life. Paliperidone has been shown to reduce symptoms of schizophrenia and schizoaffective disorder.

2.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G592-G601, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29746171

RESUMO

We have previously demonstrated that satiety sensing vagal afferent neurons are less responsive to meal-related stimuli in obesity because of reduced electrical excitability. As leak K+ currents are key determinants of membrane excitability, we hypothesized that leak K+ currents are increased in vagal afferents during obesity. Diet-induced obesity was induced by feeding C57Bl/6J mice a high-fat diet (HFF) (60% energy from fat) for 8-10 wk. In vitro extracellular recordings were performed on jejunal afferent nerves. Whole cell patch-clamp recordings were performed on mouse nodose ganglion neurons. Leak K+ currents were isolated using ion substitution and pharmacological blockers. mRNA for TWIK-related acid-sensitive K+ (TASK) subunits was measured using quantitative real-time PCR. Intestinal afferent responses to nutrient (oleate) and non-nutrient (ATP) stimuli were significantly decreased in HFF mice. Voltage clamp experiments revealed the presence of a voltage-insensitive resting potassium conductance that was increased by external alkaline pH and halothane, known properties of TASK currents. In HFF neurons, leak K+ current was approximately doubled and was reduced by TASK1 and TASK3 inhibitors. The halothane sensitive current was similarly increased. Quantitative PCR revealed the presence of mRNA encoding TASK1 (KCNK3) and TASK3 (KCNK9) channels in nodose neurons. TASK3 transcript was significantly increased in HFF mice. The reduction in vagal afferent excitability in obesity is due in part to an increase of resting (leak) K+ conductance. TASK channels may account for the impairment of satiety signaling in diet-induced obesity and thus is a therapeutic target for obesity treatment. NEW & NOTEWORTHY This study characterized the electrophysiological properties and gene expression of the TWIK-related acid-sensitive K+ (TASK) channel in vagal afferent neurons. TASK conductance was increased and contributed to decreased excitability in diet-induced obesity. TASK channels may account for the impairment of satiety signaling in diet-induced obesity and thus is a promising therapeutic target.


Assuntos
Potenciais de Ação , Neurônios Aferentes/metabolismo , Obesidade/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Nervo Vago/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/fisiologia , Obesidade/etiologia , Obesidade/fisiopatologia , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA