Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Neuron ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38870929

RESUMO

In classical cerebellar learning, Purkinje cells (PkCs) associate climbing fiber (CF) error signals with predictive granule cells (GrCs) that were active just prior (∼150 ms). The cerebellum also contributes to behaviors characterized by longer timescales. To investigate how GrC-CF-PkC circuits might learn seconds-long predictions, we imaged simultaneous GrC-CF activity over days of forelimb operant conditioning for delayed water reward. As mice learned reward timing, numerous GrCs developed anticipatory activity ramping at different rates until reward delivery, followed by widespread time-locked CF spiking. Relearning longer delays further lengthened GrC activations. We computed CF-dependent GrC→PkC plasticity rules, demonstrating that reward-evoked CF spikes sufficed to grade many GrC synapses by anticipatory timing. We predicted and confirmed that PkCs could thereby continuously ramp across seconds-long intervals from movement to reward. Learning thus leads to new GrC temporal bases linking predictors to remote CF reward signals-a strategy well suited for learning to track the long intervals common in cognitive domains.

2.
J Neurosci ; 43(45): 7554-7564, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940582

RESUMO

The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Humanos , Cognição/fisiologia , Cerebelo/fisiologia , Transtornos do Neurodesenvolvimento/patologia
3.
Nat Neurosci ; 26(9): 1630-1641, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604889

RESUMO

The vast expansion from mossy fibers to cerebellar granule cells (GrC) produces a neural representation that supports functions including associative and internal model learning. This motif is shared by other cerebellum-like structures and has inspired numerous theoretical models. Less attention has been paid to structures immediately presynaptic to GrC layers, whose architecture can be described as a 'bottleneck' and whose function is not understood. We therefore develop a theory of cerebellum-like structures in conjunction with their afferent pathways that predicts the role of the pontine relay to cerebellum and the glomerular organization of the insect antennal lobe. We highlight a new computational distinction between clustered and distributed neuronal representations that is reflected in the anatomy of these two brain structures. Our theory also reconciles recent observations of correlated GrC activity with theories of nonlinear mixing. More generally, it shows that structured compression followed by random expansion is an efficient architecture for flexible computation.


Assuntos
Encéfalo , Cerebelo , Ponte , Aprendizagem , Neurônios
4.
Clin J Am Soc Nephrol ; 18(9): 1222-1224, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36942999

Assuntos
Albuminas , Rim , Humanos
6.
Proteomics Clin Appl ; 17(2): e2200063, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36189891

RESUMO

PURPOSE: Chronic kidney disease (CKD) is defined by a reduced renal function, that is, glomerular filtration rate, and the extent of kidney damage is assessed by determining serum creatinine levels and proteins in urine, diagnosed as proteinuria/albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush border membranes (BBMs) on PT cells are important in maintaining the stability of PT functions. EXPERIMENTAL DESIGN: An LC-MS/MS bottom-up proteomics analysis of BBMs from four groups of rat models was applied to investigate protein abundance alterations associated with CKD progression. Moreover, systems biology analyses were used to identify key proteins that can provide insight into the different regulated molecular pathways and processes associated with CKD. RESULTS: Our results indicated that 303 proteins showed significantly altered expressions from the severe CKD BBM group when compared to the control. Focusing on renal diseases, several proteins including Ctnnb1, Fah, and Icam1 were annotated to kidney damage and urination disorder. The up-regulation of Ctnnb1 (ß-catenin) could contribute to CKD through the regulation of the WNT signaling pathway. CONCLUSION AND CLINICAL RELEVANCE: Overall, the study of protein abundance changes in BBMs from rat models helps to reveal protein corrections with important pathways and regulator effects involved in CKD. Although this study is focused on rat models, the results provided more information for a deeper insight into possible CKD mechanisms in humans.


Assuntos
Albuminúria , Insuficiência Renal Crônica , Humanos , Ratos , Animais , Albuminúria/complicações , Albuminúria/diagnóstico , Microvilosidades , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Rim/metabolismo
7.
J Biol Chem ; 298(10): 102371, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970386

RESUMO

Kidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.


Assuntos
Albuminas , Asparagina , Túbulos Renais Proximais , Receptores de Superfície Celular , Animais , Ratos , Albuminas/metabolismo , Endocitose/fisiologia , Glicosilação , Túbulos Renais Proximais/metabolismo , Proteinúria/metabolismo , Asparagina/genética , Asparagina/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
8.
Physiol Rev ; 102(4): 1625-1667, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35378997

RESUMO

For nearly 50 years the proximal tubule (PT) has been known to reabsorb, process, and either catabolize or transcytose albumin from the glomerular filtrate. Innovative techniques and approaches have provided insights into these processes. Several genetic diseases, nonselective PT cell defects, chronic kidney disease (CKD), and acute PT injury lead to significant albuminuria, reaching nephrotic range. Albumin is also known to stimulate PT injury cascades. Thus, the mechanisms of albumin reabsorption, catabolism, and transcytosis are being reexamined with the use of techniques that allow for novel molecular and cellular discoveries. Megalin, a scavenger receptor, cubilin, amnionless, and Dab2 form a nonselective multireceptor complex that mediates albumin binding and uptake and directs proteins for lysosomal degradation after endocytosis. Albumin transcytosis is mediated by a pH-dependent binding affinity to the neonatal Fc receptor (FcRn) in the endosomal compartments. This reclamation pathway rescues albumin from urinary losses and cellular catabolism, extending its serum half-life. Albumin that has been altered by oxidation, glycation, or carbamylation or because of other bound ligands that do not bind to FcRn traffics to the lysosome. This molecular sorting mechanism reclaims physiological albumin and eliminates potentially toxic albumin. The clinical importance of PT albumin metabolism has also increased as albumin is now being used to bind therapeutic agents to extend their half-life and minimize filtration and kidney injury. The purpose of this review is to update and integrate evolving information regarding the reabsorption and processing of albumin by proximal tubule cells including discussion of genetic disorders and therapeutic considerations.


Assuntos
Albuminas , Túbulos Renais Proximais , Albuminas/metabolismo , Transporte Biológico , Endocitose/fisiologia , Humanos , Túbulos Renais Proximais/metabolismo
9.
Front Physiol ; 13: 827280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399274

RESUMO

Intravital multiphoton microscopy has empowered investigators to study dynamic cell and subcellular processes in vivo within normal and disease organs. Advances in hardware, software, optics, transgenics and fluorescent probe design and development have enabled new quantitative approaches to create a disruptive technology pioneering advances in understanding of normal biology, disease pathophysiology and therapies. Offering superior spatial and temporal resolution with high sensitivity, investigators can follow multiple processes simultaneously and observe complex interactions between different cell types, intracellular organelles, proteins and track molecules for cellular uptake, intracellular trafficking, and metabolism in a cell specific fashion. The technique has been utilized in the kidney to quantify multiple dynamic processes including capillary flow, permeability, glomerular function, proximal tubule processes and determine the effects of diseases and therapeutic mechanisms. Limitations include the depth of tissue penetration with loss of sensitivity and resolution due to scattered emitted light. Tissue clearing technology has virtually eliminated penetration issues for fixed tissue studies. Use of multiphoton microscopy in preclinical animal models offers distinct advantages resulting in new insights into physiologic processes and the pathophysiology and treatment of diseases.

10.
J Vis Exp ; (181)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35311826

RESUMO

Applying novel microscopy methods to suitable animal disease models to explore the dynamic physiology of the kidney remains a challenge. Rats with surface glomeruli provide a unique opportunity to investigate physiological and pathophysiological processes using intravital 2-photon microscopy. Quantification of glomerular capillary blood flow and vasoconstriction and dilatation in response to drugs, permeability, and inflammation are just some of the processes that can be studied. In addition, transgenic rats, i.e., podocytes labeled with fluorescent dyes and other molecular biomarker approaches, provide increased resolution to directly monitor and quantify protein-protein interactions and the effects of specific molecular alterations. In mice, which lack surface glomeruli after four weeks of age, unilateral ureteral obstruction (UUO) for several weeks has been used to induce surface glomeruli. As this induction model does not allow for baseline studies, we quantified the effects of UUO on glomerular processes in the UUO model in Munich Wistar Frömter (MWF) rats, which have surface glomeruli under physiologic conditions. The UUO model for five weeks or more induced significant alterations to gross renal morphology, the peritubular and glomerular microvasculature, as well as the structure and function of tubular epithelia. Glomerular and peritubular red blood cell (RBC) flow decreased significantly (p < 0.01), probably due to the significant increase in the adherence of white blood cells (WBCs) within glomerular and peritubular capillaries. The glomerular sieving coefficient of albumin increased from 0.015 ± 0.002 in untreated MWFs to 0.045 ± 0.05 in 5-week-old UUO MWF rats. Twelve weeks of UUO resulted in further increases in surface glomerular density and glomerular sieving coefficient (GSC) for albumin. Fluorescent albumin filtered across the glomeruli was not reabsorbed by the proximal tubules. These data suggest that using UUO to induce surface glomeruli limits the ability to study and interpret normal glomerular processes and disease alterations.


Assuntos
Obstrução Ureteral , Animais , Taxa de Filtração Glomerular , Rim/metabolismo , Glomérulos Renais/metabolismo , Camundongos , Microscopia , Ratos , Ratos Wistar
11.
Psychol Health Med ; 27(7): 1576-1581, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33779435

RESUMO

Slowed gait is one of the strongest predictors of fall risk in older adults. The present study investigated whether gait speed mediated the relationship between depression and fall history in 147 older adults presenting to a memory clinic for cognitive complaints. Depression, cognitive status, gait speed, and number of falls within the last year were the primary measures. Results revealed fallers, relative to non-fallers, had slower gait speed and higher depression scores. As hypothesized, analyses using the PROCESS macro found that gait mediated the relationship between depression and fall history. Additionally, the combination of depression and mild cognitive impairments (MCI) associated with a significantly greater likelihood of falling. Our findings indicate that combined depression and MCI have additive effects on fall risk, likely through the destabilizing effect of slowed gait on balance. Better understanding the underlying pathophysiology involved in MCI and depression-related gait disturbances may lead to improved intervention targets for fall risk prevention.


Assuntos
Acidentes por Quedas , Velocidade de Caminhada , Idoso , Cognição/fisiologia , Depressão/epidemiologia , Marcha/fisiologia , Humanos , Velocidade de Caminhada/fisiologia
12.
Biomolecules ; 11(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34827558

RESUMO

Chronic kidney disease (CKD) is defined as a decrease in renal function or glomerular filtration rate (GFR), and proteinuria is often present. Proteinuria increases with age and can be caused by glomerular and/or proximal tubule (PT) alterations. PT cells have an apical brush border membrane (BBM), which is a highly dynamic, organized, and specialized membrane region containing multiple glycoproteins required for its functions including regulating uptake, secretion, and signaling dependent upon the physiologic state. PT disorders contribute to the dysfunction observed in CKD. Many glycoprotein functions have been attributed to their N- and O-glycans, which are highly regulated and complex. In this study, the O-glycans present in rat BBMs from animals with different levels of kidney disease and proteinuria were characterized and analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). A principal component analysis (PCA) documented that each group has distinct O-glycan distributions. Higher fucosylation levels were observed in the CKD and diabetic groups, which may contribute to PT dysfunction by altering physiologic glycoprotein interactions. Fucosylated O-glycans such as 1-1-1-0 exhibited higher abundance in the severe proteinuric groups. These glycomic results revealed that differential O-glycan expressions in CKD progressions has the potential to define the mechanism of proteinuria in kidney disease and to identify potential therapeutic interventions.


Assuntos
Microvilosidades , Animais , Taxa de Filtração Glomerular , Glicosilação , Ratos , Insuficiência Renal Crônica
13.
Biomolecules ; 11(11)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34827675

RESUMO

Chronic kidney disease (CKD) is defined by a reduced renal function i.e., glomerular filtration rate (GFR), and the presence of kidney damage is determined by measurement of proteinuria or albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush-border membranes (BBMs) on PT cells play an important role in maintaining the stability of PT functions. The PT BBM, a highly dynamic, organized, specialized membrane, contains a variety of glycoproteins required for the functions of PT. Since protein glycosylation regulates many protein functions, the alteration of glycosylation due to the glycan changes has attracted more interests for a variety of disease studies recently. In this work, liquid chromatography-tandem mass spectrometry was utilized to analyze the abundances of permethylated glycans from rats under control to mild CKD, severe CKD, and diabetic conditions. The most significant differences were observed in sialylation level with the highest present in the severe CKD and diabetic groups. Moreover, high mannose N-glycans was enriched in the CKD BBMs. Characterization of all the BBM N-glycan changes supports that these changes are likely to impact the functional properties of the dynamic PT BBM. Further, these changes may lead to the potential discovery of glycan biomarkers for improved CKD diagnosis and new avenues for therapeutic treatments.


Assuntos
Microvilosidades , Animais , Glicômica , Glicosilação , Rim , Ratos
14.
Cell ; 184(20): 5107-5121.e14, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551316

RESUMO

Neural circuit assembly features simultaneous targeting of numerous neuronal processes from constituent neuron types, yet the dynamics is poorly understood. Here, we use the Drosophila olfactory circuit to investigate dynamic cellular processes by which olfactory receptor neurons (ORNs) target axons precisely to specific glomeruli in the ipsi- and contralateral antennal lobes. Time-lapse imaging of individual axons from 30 ORN types revealed a rich diversity in extension speed, innervation timing, and ipsilateral branch locations and identified that ipsilateral targeting occurs via stabilization of transient interstitial branches. Fast imaging using adaptive optics-corrected lattice light-sheet microscopy showed that upon approaching target, many ORN types exhibiting "exploring branches" consisted of parallel microtubule-based terminal branches emanating from an F-actin-rich hub. Antennal nerve ablations uncovered essential roles for bilateral axons in contralateral target selection and for ORN axons to facilitate dendritic refinement of postsynaptic partner neurons. Altogether, these observations provide cellular bases for wiring specificity establishment.


Assuntos
Condutos Olfatórios/citologia , Condutos Olfatórios/diagnóstico por imagem , Imagem com Lapso de Tempo , Animais , Axônios/fisiologia , Células Cultivadas , Dendritos/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Microtúbulos/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Fatores de Tempo
15.
ACS Earth Space Chem ; 5(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34497969

RESUMO

Overexposure to ultraviolet (UV) radiation is a threat to human health. It can cause skin cancer and cataracts. Human-made ozone-depleting substances (ODSs) reduce the ozone concentration in the Earth's stratosphere, which acts as a protective shield from UV radiation. To protect and restore the ozone layer, the Montreal Protocol on Substances that Deplete the Ozone Layer was enacted in 1987 to phase out the production and consumption of certain ODSs and was later amended and adjusted to significantly strengthen its requirements. The United States Environmental Protection Agency (EPA) uses its Atmospheric and Health Effects Framework (AHEF) model to assess the adverse human health effects associated with stratospheric ozone depletion and the U.S. health benefits from the global implementation of the Montreal Protocol. Comparing the Montreal Protocol as amended and adjusted with a scenario of no controls on ODSs showed the prevention of an estimated 443 million cases of skin cancer and 63 million cataract cases for people born in the United States between 1890 and 2100. In addition, 2.3 million skin cancer deaths are avoided. Compared with the original 1987 Montreal Protocol, strengthening the Montreal Protocol, through its subsequent amendments and adjustments, resulted in an estimated 230 million fewer skin cancer cases, 1.3 million fewer skin cancer deaths, and 33 million fewer cataract cases.

16.
Cell ; 184(14): 3731-3747.e21, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34214470

RESUMO

In motor neuroscience, state changes are hypothesized to time-lock neural assemblies coordinating complex movements, but evidence for this remains slender. We tested whether a discrete change from more autonomous to coherent spiking underlies skilled movement by imaging cerebellar Purkinje neuron complex spikes in mice making targeted forelimb-reaches. As mice learned the task, millimeter-scale spatiotemporally coherent spiking emerged ipsilateral to the reaching forelimb, and consistent neural synchronization became predictive of kinematic stereotypy. Before reach onset, spiking switched from more disordered to internally time-locked concerted spiking and silence. Optogenetic manipulations of cerebellar feedback to the inferior olive bi-directionally modulated neural synchronization and reaching direction. A simple model explained the reorganization of spiking during reaching as reflecting a discrete bifurcation in olivary network dynamics. These findings argue that to prepare learned movements, olivo-cerebellar circuits enter a self-regulated, synchronized state promoting motor coordination. State changes facilitating behavioral transitions may generalize across neural systems.


Assuntos
Movimento/fisiologia , Rede Nervosa/fisiologia , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Cerebelo/fisiologia , Sincronização Cortical , Membro Anterior/fisiologia , Interneurônios/fisiologia , Aprendizagem , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Atividade Motora/fisiologia , Núcleo Olivar/fisiologia , Optogenética , Células de Purkinje/fisiologia , Comportamento Estereotipado , Análise e Desempenho de Tarefas
17.
Science ; 372(6546): 1068-1073, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34083484

RESUMO

Mammalian medial and lateral hippocampal networks preferentially process spatial- and object-related information, respectively. However, the mechanisms underlying the assembly of such parallel networks during development remain largely unknown. Our study shows that, in mice, complementary expression of cell surface molecules teneurin-3 (Ten3) and latrophilin-2 (Lphn2) in the medial and lateral hippocampal networks, respectively, guides the precise assembly of CA1-to-subiculum connections in both networks. In the medial network, Ten3-expressing (Ten3+) CA1 axons are repelled by target-derived Lphn2, revealing that Lphn2- and Ten3-mediated heterophilic repulsion and Ten3-mediated homophilic attraction cooperate to control precise target selection of CA1 axons. In the lateral network, Lphn2-expressing (Lphn2+) CA1 axons are confined to Lphn2+ targets via repulsion from Ten3+ targets. Our findings demonstrate that assembly of parallel hippocampal networks follows a "Ten3→Ten3, Lphn2→Lphn2" rule instructed by reciprocal repulsions.


Assuntos
Orientação de Axônios , Axônios/fisiologia , Região CA1 Hipocampal/fisiologia , Hipocampo/fisiologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Região CA1 Hipocampal/citologia , Córtex Entorrinal/fisiologia , Feminino , Hipocampo/citologia , Ligantes , Masculino , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Vias Neurais , Receptores de Peptídeos/genética , Transcriptoma
18.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088841

RESUMO

Cerebellar granule cells (GrCs) are usually regarded as a uniform cell type that collectively expands the coding space of the cerebellum by integrating diverse combinations of mossy fiber inputs. Accordingly, stable molecularly or physiologically defined GrC subtypes within a single cerebellar region have not been reported. The only known cellular property that distinguishes otherwise homogeneous GrCs is the correspondence between GrC birth timing and the depth of the molecular layer to which their axons project. To determine the role birth timing plays in GrC wiring and function, we developed genetic strategies to access early- and late-born GrCs. We initiated retrograde monosynaptic rabies virus tracing from control (birth timing unrestricted), early-born, and late-born GrCs, revealing the different patterns of mossy fiber input to GrCs in vermis lobule 6 and simplex, as well as to early- and late-born GrCs of vermis lobule 6: sensory and motor nuclei provide more input to early-born GrCs, while basal pontine and cerebellar nuclei provide more input to late-born GrCs. In vivo multidepth two-photon Ca2+ imaging of axons of early- and late-born GrCs revealed representations of diverse task variables and stimuli by both populations, with modest differences in the proportions encoding movement, reward anticipation, and reward consumption. Our results suggest neither organized parallel processing nor completely random organization of mossy fiber→GrC circuitry but instead a moderate influence of birth timing on GrC wiring and encoding. Our imaging data also provide evidence that GrCs can represent generalized responses to aversive stimuli, in addition to recently described reward representations.


Assuntos
Córtex Cerebelar/crescimento & desenvolvimento , Fibras Nervosas/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebelar/virologia , Camundongos , Camundongos Transgênicos , Fibras Nervosas/virologia , Vírus da Raiva/metabolismo
19.
Cell Stem Cell ; 28(7): 1323-1334.e8, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33945794

RESUMO

Intramuscular fatty deposits, which are seen in muscular dystrophies and with aging, negatively affect muscle function. The cells of origin of adipocytes constituting these fatty deposits are mesenchymal stromal cells, fibroadipogenic progenitors (FAPs). We uncover a molecular fate switch, involving miR-206 and the transcription factor Runx1, that controls FAP differentiation to adipocytes. Mice deficient in miR-206 exhibit increased adipogenesis following muscle injury. Adipogenic differentiation of FAPs is abrogated by miR-206 mimics. Using a labeled microRNA (miRNA) pull-down and sequencing (LAMP-seq), we identified Runx1 as a miR-206 target, with miR-206 repressing Runx1 translation. In the absence of miR-206 in FAPs, Runx1 occupancy near transcriptional start sites of adipogenic genes and expression of these genes increase. We demonstrate that miR-206 mimicry in vivo limits intramuscular fatty infiltration. Our results provide insight into the underlying molecular mechanisms of FAP fate determination and formation of harmful fatty deposits in skeletal muscle.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Adipócitos , Adipogenia/genética , Animais , Diferenciação Celular , Camundongos , MicroRNAs/genética , Músculo Esquelético
20.
Neuron ; 109(4): 629-644.e8, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33352118

RESUMO

The synaptotrophic hypothesis posits that synapse formation stabilizes dendritic branches, but this hypothesis has not been causally tested in vivo in the mammalian brain. The presynaptic ligand cerebellin-1 (Cbln1) and postsynaptic receptor GluD2 mediate synaptogenesis between granule cells and Purkinje cells in the molecular layer of the cerebellar cortex. Here we show that sparse but not global knockout of GluD2 causes under-elaboration of Purkinje cell dendrites in the deep molecular layer and overelaboration in the superficial molecular layer. Developmental, overexpression, structure-function, and genetic epistasis analyses indicate that these dendrite morphogenesis defects result from a deficit in Cbln1/GluD2-dependent competitive interactions. A generative model of dendrite growth based on competitive synaptogenesis largely recapitulates GluD2 sparse and global knockout phenotypes. Our results support the synaptotrophic hypothesis at initial stages of dendrite development, suggest a second mode in which cumulative synapse formation inhibits further dendrite growth, and highlight the importance of competition in dendrite morphogenesis.


Assuntos
Cerebelo/citologia , Cerebelo/metabolismo , Dendritos/metabolismo , Proteínas do Tecido Nervoso/deficiência , Precursores de Proteínas/deficiência , Células de Purkinje/metabolismo , Receptores de Glutamato/deficiência , Animais , Dendritos/genética , Feminino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Gravidez , Ligação Proteica/fisiologia , Precursores de Proteínas/genética , Receptores de Glutamato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA