Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14229, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902325

RESUMO

Natural products are an unsurpassed source of leading structures in drug discovery. The biosynthetic machinery of the producing organism offers an important source for modifying complex natural products, leading to analogs that are unattainable by chemical semisynthesis or total synthesis. In this report, through the combination of natural products chemistry and diversity-oriented synthesis, a diversity-enhanced extracts approach is proposed using chemical reactions that remodel molecular scaffolds directly on extracts of natural resources. This method was applied to subextract enriched in sesquiterpene lactones from Ambrosia tenuifolia (Fam. Asteraceae) using acid media conditions (p-toluenesulfonic acid) to change molecular skeletons. The chemically modified extract was then fractionated by a bioguided approach to obtain the pure compounds responsible for the anti-glioblastoma (GBM) activity in T98G cell cultures. Indeed, with the best candidate, chronobiological experiments were performed to evaluate temporal susceptibility to the treatment on GBM cell cultures to define the best time to apply the therapy. Finally, bioinformatics tools were used to supply qualitative and quantitative information on the physicochemical properties, chemical space, and structural similarity of the compound library obtained. As a result, natural products derivatives containing new molecular skeletons were obtained, with possible applications as chemotherapeutic agents against human GBM T98G cell cultures.


Assuntos
Glioblastoma , Extratos Vegetais , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Linhagem Celular Tumoral , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Asteraceae/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Lactonas/química , Lactonas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
Cell Mol Neurobiol ; 44(1): 51, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907776

RESUMO

The circadian system is a conserved time-keeping machinery that regulates a wide range of processes such as sleep/wake, feeding/fasting, and activity/rest cycles to coordinate behavior and physiology. Circadian disruption can be a contributing factor in the development of metabolic diseases, inflammatory disorders, and higher risk of cancer. Glioblastoma (GBM) is a highly aggressive grade 4 brain tumor that is resistant to conventional therapies and has a poor prognosis after diagnosis, with a median survival of only 12-15 months. GBM cells kept in culture were shown to contain a functional circadian oscillator. In seeking more efficient therapies with lower side effects, we evaluated the pharmacological modulation of the circadian clock by targeting the cytosolic kinases glycogen synthase kinase-3 (GSK-3) and casein kinase 1 ε/δ (CK1ε/δ) with specific inhibitors (CHIR99021 and PF670462, respectively), the cryptochrome protein stabilizer (KL001), or circadian disruption after Per2 knockdown expression in GBM-derived cells. CHIR99021-treated cells had a significant effect on cell viability, clock protein expression, migration, and cell cycle distribution. Moreover, cultures exhibited higher levels of reactive oxygen species and alterations in lipid droplet content after GSK-3 inhibition compared to control cells. The combined treatment of CHIR99021 with temozolomide was found to improve the effect on cell viability compared to temozolomide therapy alone. Per2 disruption affected both GBM migration and cell cycle progression. Overall, our results suggest that pharmacological modulation or molecular clock disruption severely affects GBM cell biology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Piridinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Citosol/metabolismo , Citosol/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Pirimidinas/farmacologia , Movimento Celular/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Espécies Reativas de Oxigênio/metabolismo
3.
Mol Neurobiol ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180613

RESUMO

Glioblastomas derived from malignant astrocytes are the most common primary tumors of the central nervous system in humans, exhibiting very bad prognosis. Treatment with surgery, radiotherapy, and chemotherapy (mainly using temozolomide), generates as much one-year survival. The circadian clock controls different aspects of tumor development, and its role in GBM is beginning to be explored. Here, the role of the canonic circadian clock gene bmal1 was studied in vivo in a nude mice model bearing human GBMs from LN229 cells xenografted orthotopically in the dorsal striatum. For that aim, a bmal1 knock-down was generated in LN229 cells by CRISPR/Cas9 gene editing tool, and tumor progression was followed in male mice by measuring survival, tumor growth, cell proliferation and prognosis with CD44 marker, as well as astrocyte activation in the tumor microenvironment with GFAP and nestin markers. Disruption of bmal1 in the tumor decreased survival, increased tumor growth and CD44 expression, worsened motor performance, as well as increased GFAP expression in astrocytes at tumor microenvironment. In addition, survival and tumor progression was not affected in mice bearing LN229 wild type GBM that underwent circadian disruption by constant light, as compared to mice synchronized to 12:12 light-dark cycles. These results consistently demonstrate in an in vivo orthotopic model of human GBM, that bmal1 has a key role as a tumor suppressor gene regulating GBM progression.

4.
J Biol Chem ; 298(11): 102551, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183836

RESUMO

Involved in triglyceride (TG) and glycerophospholipid metabolism, the liver plays a crucial physiological role in the human body both as a major metabolic integrator and a central hub for lipid and energy homeostasis. Metabolic disorders can be caused by various factors that promote abnormal lipid accumulation in storage organelles called lipid droplets (LDs), as in hepatic steatosis, a metabolic syndrome manifestation that can progress to a hepatocellular carcinoma, the most common primary liver malignancy worldwide. Modern life involves conditions that disrupt the biological clock, causing metabolic disorders and higher cancer risk. A circadian clock is present in the liver and in immortalized cell lines and temporally regulates physiological processes by driving transcriptional and metabolic rhythms. Here we investigated metabolic rhythms in HepG2 cells, a human hepatocellular carcinoma-derived cell line, and the link between these rhythms and the circadian clock in control (Bmal1-wildtype) and Bmal1-disrupted (B-D) cells having their molecular clock impaired. Rhythms in the expression of lipid-synthesizing enzymes ChoKα, Pcyt2, and Lipin1, in the metabolism of particular glycerophospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine, and in the phosphatidylcholine/phosphatidylethanolamine ratio and TG and LD content were observed in Bmal1-wildtype cells. By contrast, in the B-D model, the whole hepatic metabolism was severely altered with a significant reduction in the TG and LD content as well as in ChoKα and other related lipid enzymes. Together, our results suggest a very strong crosstalk between the molecular clock and lipid metabolism, which exhibits an exacerbated pathological condition in B-D cells.


Assuntos
Carcinoma Hepatocelular , Relógios Circadianos , Neoplasias Hepáticas , Humanos , Metabolismo dos Lipídeos/fisiologia , Fatores de Transcrição ARNTL/metabolismo , Fosfatidiletanolaminas/metabolismo , Carcinoma Hepatocelular/metabolismo , Ritmo Circadiano , Neoplasias Hepáticas/metabolismo , Relógios Circadianos/fisiologia , Fígado/metabolismo , Triglicerídeos/metabolismo , Fosfatidilcolinas/metabolismo , Linhagem Celular
5.
Mol Neurobiol ; 59(1): 326-353, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34697790

RESUMO

Along evolution, living organisms developed a precise timekeeping system, circadian clocks, to adapt life to the 24-h light/dark cycle and temporally regulate physiology and behavior. The transcriptional molecular circadian clock and metabolic/redox oscillator conforming these clocks are present in organs, tissues, and even in individual cells, where they exert circadian control over cellular metabolism. Disruption of the molecular clock may cause metabolic disorders and higher cancer risk. The synthesis and degradation of glycerophospholipids (GPLs) is one of the most highly regulated metabolisms across the 24-h cycle in terms of total lipid content and enzyme expression and activity in the nervous system and individual cells. Lipids play a plethora of roles (membrane biogenesis, energy sourcing, signaling, and the regulation of protein-chromatin interaction, among others), making control of their metabolism a vital checkpoint in the cellular organization of physiology. An increasing body of evidence clearly demonstrates an orchestrated and sequential series of events occurring in GPL metabolism across the 24-h day in diverse retinal cell layers, immortalized fibroblasts, and glioma cells. Moreover, the clock gene Per1 and other circadian-related genes are tightly involved in the regulation of GPL synthesis in quiescent cells. However, under proliferation, the metabolic oscillator continues to control GPL metabolism of brain cancer cells even after molecular circadian clock disruption, reflecting the crucial role of the temporal metabolism organization in cell preservation. The aim of this review is to examine the control exerted by circadian clocks over GPL metabolism, their synthesizing enzyme expression and activities in normal and tumorous cells of the nervous system and in immortalized fibroblasts.


Assuntos
Ritmo Circadiano/fisiologia , Fibroblastos/metabolismo , Glicerofosfolipídeos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Neurônios/metabolismo , Animais , Relógios Circadianos/fisiologia , Humanos
6.
Int J Mol Sci ; 22(15)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34361055

RESUMO

Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Ritmo Circadiano/efeitos dos fármacos , Desenvolvimento de Medicamentos , Glioblastoma/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Animais , Humanos
7.
FASEB J ; 35(2): e21231, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33428275

RESUMO

Tumors of the nervous system including glioblastoma multiforme (GBM) are the most frequent and aggressive form of brain tumors; however, little is known about the impact of the circadian timing system on the formation, growth, and treatment of these tumors. We investigated day/night differences in tumor growth after injection of A530 glioma cells isolated from malignant peripheral nerve sheath tumor (MPNSTs) of NPcis (Trp53+/- ; Nf1+/- ) mice. Synchronized A530 cell cultures expressing typical glial markers were injected at the beginning of the day or night into the sciatic nerve zone of C57BL/6 mice subject to a 12:12 hours light/dark (LD) cycle or after being released to constant darkness (DD). Tumors generated in animals injected early at night in the LD cycle or in DD showed higher growth rates than in animals injected diurnally. No differences were found when animals were injected at the same time with cultures synchronized 12 hours apart. Similar experiments performed with B16 melanoma cells showed higher tumor growth rates in animals injected at the beginning of the night compared to those injected in the daytime. A higher tumor growth rate than that in controls was observed when mice were injected with knocked-down clock gene Bmal1 cells. Finally, when we compared day/night administration of different doses of the proteasome inhibitor Bortezomib (0.5-1.5 mg/kg) in tumor-bearing animals, we found that low-dose chemotherapy displayed higher efficacy when administered at night. Results suggest the existence of a precise temporal control of tumor growth and of drug efficacy in which the host state and susceptibility are critical.


Assuntos
Neoplasias Encefálicas/patologia , Ritmo Circadiano , Glioblastoma/patologia , Fotoperíodo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Fatores de Transcrição ARNTL/genética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Bortezomib/administração & dosagem , Bortezomib/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Esquema de Medicação , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurofibromina 1/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto/normas
9.
Mol Neurobiol ; 56(2): 1276-1292, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29881948

RESUMO

Even in immortalized cell lines, circadian clocks regulate physiological processes in a time-dependent manner, driving transcriptional and metabolic rhythms, the latter being able to persist without transcription. Circadian rhythm disruptions in modern life (shiftwork, jetlag, etc.) may lead to higher cancer risk. Here, we investigated whether the human glioblastoma T98G cells maintained quiescent or under proliferation keep a functional clock and whether cells display differential time responses to bortezomib chemotherapy. In arrested cultures, mRNAs for clock (Per1, Rev-erbα) and glycerophospholipid (GPL)-synthesizing enzyme genes, 32P-GPL labeling, and enzyme activities exhibited circadian rhythmicity; oscillations were also found in the redox state/peroxiredoxin oxidation. In proliferating cells, rhythms of gene expression were lost or their periodicity shortened whereas the redox and GPL metabolisms continued to fluctuate with a similar periodicity as under arrest. Cell viability significantly changed over time after bortezomib treatment; however, this rhythmicity and the redox cycles were altered after Bmal1 knock-down, indicating cross-talk between the transcriptional and the metabolic oscillators. An intrinsic metabolic clock continues to function in proliferating cells, controlling diverse metabolisms and highlighting differential states of tumor suitability for more efficient, time-dependent chemotherapy when the redox state is high and GPL metabolism low.


Assuntos
Antineoplásicos/farmacologia , Bortezomib/farmacologia , Proliferação de Células/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Glioblastoma/metabolismo , Neurônios/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Relógios Circadianos/fisiologia , Glioblastoma/genética , Humanos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA