Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Virol ; 97(2): e0193822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36749070

RESUMO

Mammalian myxovirus resistance (Mx) proteins are interferon-induced, large dynamin-like GTPases with a broad antiviral spectrum. Here, we analyzed the antiviral activity of selected mammalian Mx1 proteins against Thogoto virus (THOV). Of those, equine Mx1 (eqMx1) showed antiviral activity comparable to that of the human MX1 gene product, designated huMxA, whereas most Mx1 proteins were antivirally inactive. We previously demonstrated that the flexible loop L4 protruding from the stalk domain of huMxA, and especially the phenylalanine at position 561 (F561), determines its antiviral specificity against THOV (P. S. Mitchell, C. Patzina, M. Emerman, O. Haller, et al., Cell Host Microbe 12:598-604, 2012, https://doi.org/10.1016/j.chom.2012.09.005). However, despite the similar antiviral activity against THOV, the loop L4 sequence of eqMx1 substantially differs from the one of huMxA. Mutational analysis of eqMx1 L4 identified a tryptophan (W562) and the adjacent glycine (G563) as critical antiviral determinants against THOV, whereas the neighboring residues could be exchanged for nonpolar alanines without affecting the antiviral activity. Further mutational analyses revealed that a single bulky residue at position 562 and the adjacent tiny residue G563 were sufficient for antiviral activity. Moreover, this minimal set of L4 amino acids transferred anti-THOV activity to the otherwise inactive bovine Mx1 (boMx1) protein. Taken together, our data suggest a fairly simple architecture of the antiviral loop L4 that could serve as a mutational hot spot in an evolutionary arms race between Mx-escaping viral variants and their hosts. IMPORTANCE Most mammals encode two paralogs of the interferon-induced Mx proteins: Mx1, with antiviral activity largely against RNA viruses, like orthomyxoviruses and bunyaviruses; and Mx2, which is antivirally active against HIV-1 and herpesviruses. The human Mx1 protein, also called huMxA, is the best-characterized example of mammalian Mx1 proteins and was recently shown to prevent zoonotic virus transmissions. To evaluate the antiviral activity of other mammalian Mx1 proteins, we used Thogoto virus, a tick-transmitted orthomyxovirus, which is efficiently blocked by huMxA. Interestingly, we detected antiviral activity only with equine Mx1 (eqMx1) but not with other nonprimate Mx1 proteins. Detailed functional analysis of eqMx1 identified amino acid residues in the unstructured loop L4 of the stalk domain critical for antiviral activity. The structural insights of the present study explain the unique position of eqMx1 antiviral activity within the collection of nonhuman mammalian Mx1 proteins.


Assuntos
Cavalos , Proteínas de Resistência a Myxovirus , Thogotovirus , Animais , Bovinos , Humanos , Interferons/metabolismo , Estrutura Molecular , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Thogotovirus/genética
2.
Viruses ; 14(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35891445

RESUMO

La Crosse virus (LACV) is a major cause of pediatric encephalitis and aseptic meningitis in the Midwestern, Mid-Atlantic, and Southern United States, where it is an emerging pathogen. The LACV Gc glycoprotein plays a critical role in the neuropathogenesis of LACV encephalitis as the putative virus attachment protein. Previously, we identified and experimentally confirmed the location of the LACV fusion peptide within Gc and generated a panel of recombinant LACVs (rLACVs) containing mutations in the fusion peptide as well as the wild-type sequence. These rLACVs retained their ability to cause neuronal death in a primary embryonic rat neuronal culture system, despite decreased replication and fusion phenotypes. To test the role of the fusion peptide in vivo, we tested rLACVs in an age-dependent murine model of LACV encephalitis. When inoculated directly into the CNS of young adult mice (P28), the rLACV fusion peptide mutants were as neurovirulent as the rLACV engineered with a wild-type sequence, confirming the results obtained in tissue culture. In contrast, the fusion peptide mutant rLACVs were less neuroinvasive when suckling (P3) or weanling (P21) mice were inoculated peripherally, demonstrating that the LACV fusion peptide is a determinant of neuroinvasion, but not of neurovirulence. In a challenge experiment, we found that peripheral challenge of weanling (P21) mice with fusion peptide mutant rLACVs protected from a subsequent WT-LACV challenge, suggesting that mutations in the fusion peptide are an attractive target for generating live-attenuated virus vaccines. Importantly, the high degree of conservation of the fusion peptide amongst the Bunyavirales and, structurally, other arboviruses suggests that these findings are broadly applicable to viruses that use a class II fusion mechanism and cause neurologic disease.


Assuntos
Encefalite da Califórnia , Vírus La Crosse , Animais , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Ratos , Estados Unidos , Proteínas Virais/genética
3.
Int J Integr Care ; 22(2): 7, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530432

RESUMO

People in need of care, chronic or acute, often present problematic food intake and special nutritional needs. Integrated, person-centred and pro-active food and nutritional care delivery has been proven effective for people in health care. However, skills mismatches have been reported in different professions involved, which also applies to the role of chefs in healthcare. The EU funded project NECTAR aims at closing this gap by creating a new job profile, called Chef Gastro-Engineering (CGE). The current publication summarizes the status quo in hospitals and gives a perspective on the future role of chefs in integrated healthcare delivery.

4.
Clin Interv Aging ; 17: 1-13, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023909

RESUMO

In light of the increasing life expectancy of Europe's population and the rising significance of active and healthy ageing relating thereto, an integrated approach of nutritional care within primary health care is gaining importance. The aim of the review was to summarize evidence on the effectiveness of nutritional interventions in primary health care. The scoping review is based upon a comprehensive literature search of relevant literature published between January 2010 and August 2021 in PubMed, CINAHL, Cochrane Database of Systematic Reviews, Embase and Medline databases. Overall, 15 studies were included for evidence synthesis and interventions were basically clustered according to their type, into 1) eHealth and tele-medical interventions; 2) targeted single interventions; and 3) comprehensive, multi-faceted interventions. The review presents diverging evidence regarding the efficacy and effectiveness of interventions for nutritional care in primary health care, however, demonstrates encouraging outcomes. eHealth and tele-medical interventions partly show a careful positive tendency. Likewise, manifold single interventions on patient level present significant improvements in patient health outcomes. Multifaceted and comprehensive interventions found in the literature also partly demonstrate significant changes in intervention groups. Primary health care represents a critical setting for the care of older citizens and patients with complex health needs. This scoping review provides an overview of current nutrition care practices in primary health care and results reinforce the need to strengthen implementation of multi-faceted interventions carried out by the inter-disciplinary primary care team for advanced nutritional care.


Assuntos
Atenção Primária à Saúde , Telemedicina , Idoso , Humanos , Apoio Nutricional , Revisões Sistemáticas como Assunto
5.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32522852

RESUMO

Schmallenberg virus (SBV) is an insect-transmitted orthobunyavirus that can cause abortions and congenital malformations in the offspring of ruminants. Even though the two viral surface glycoproteins Gn and Gc are involved in host cell entry, the specific cellular receptors of SBV are currently unknown. Using genome-wide CRISPR-Cas9 forward screening, we identified 3'-phosphoadenosine 5'-phosphosulfate (PAPS) transporter 1 (PAPST1) as an essential factor for SBV infection. PAPST1 is a sulfotransferase involved in heparan sulfate proteoglycan synthesis encoded by the solute carrier family 35 member B2 gene (SLC35B2). SBV cell surface attachment and entry were largely reduced upon the knockout of SLC35B2, whereas the reconstitution of SLC35B2 in these cells fully restored their susceptibility to SBV infection. Furthermore, treatment of cells with heparinase diminished infection with SBV, confirming that heparan sulfate plays an important role in cell attachment and entry, although to various degrees, heparan sulfate was also found to be important to initiate infection by two other bunyaviruses, La Crosse virus and Rift Valley fever virus. Thus, PAPST1-triggered synthesis of cell surface heparan sulfate is required for the efficient replication of SBV and other bunyaviruses.IMPORTANCE SBV is a newly emerging orthobunyavirus (family Peribunyaviridae) that has spread rapidly across Europe since 2011, resulting in substantial economic losses in livestock farming. In this study, we performed unbiased genome-wide CRISPR-Cas9 screening and identified PAPST1, a sulfotransferase encoded by SLC35B2, as a host entry factor for SBV. Consistent with its role in the synthesis of heparan sulfate, we show that this activity is required for efficient infection by SBV. A comparable dependency on heparan sulfate was also observed for La Crosse virus and Rift Valley fever virus, highlighting the importance of heparan sulfate for host cell infection by bunyaviruses. Thus, the present work provides crucial insights into virus-host interactions of important animal and human pathogens.


Assuntos
Infecções por Bunyaviridae/genética , Infecções por Bunyaviridae/virologia , Sistemas CRISPR-Cas , Orthobunyavirus/genética , Orthobunyavirus/fisiologia , Animais , Bunyaviridae , Chlorocebus aethiops , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Europa (Continente) , Técnicas de Inativação de Genes , Células HEK293 , Heparitina Sulfato/metabolismo , Humanos , Gado , Glicoproteínas de Membrana/genética , Orthobunyavirus/patogenicidade , Vírus da Febre do Vale do Rift , Transportadores de Sulfato/metabolismo , Sulfotransferases/metabolismo , Células Vero , Ligação Viral
6.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950411

RESUMO

Herpesvirus infections are highly prevalent in the human population and persist for life. They are often acquired subclinically but potentially progress to life-threatening diseases in immunocompromised individuals. The interferon system is indispensable for the control of herpesviral replication. However, the responsible antiviral effector mechanisms are not well characterized. The type I interferon-induced, human myxovirus resistance 2 (MX2) gene product MxB, a dynamin-like large GTPase, has recently been identified as a potent inhibitor of HIV-1. We now show that MxB also interferes with an early step of herpesvirus replication, affecting alpha-, beta-, and gammaherpesviruses before or at the time of immediate early gene expression. Defined MxB mutants influencing GTP binding and hydrolysis revealed that the effector mechanism against herpesviruses is thoroughly different from that against HIV-1. Overall, our findings demonstrate that MxB serves as a broadly acting intracellular restriction factor that controls the establishment of not only retrovirus but also herpesvirus infection of all three subfamilies.IMPORTANCE Human herpesviruses pose a constant threat to human health. Reactivation of persisting herpesvirus infections, particularly in immunocompromised individuals and the elderly, can cause severe diseases, such as zoster, pneumonia, encephalitis, or cancer. The interferon system is relevant for the control of herpesvirus replication as exemplified by fatal disease outcomes in patients with primary immunodeficiencies. Here, we describe the interferon-induced, human MX2 gene product MxB as an efficient restriction factor of alpha-, beta-, and gammaherpesviruses. MxB has previously been described as an inhibitor of HIV-1. Importantly, our mutational analyses of MxB reveal an antiviral mechanism of herpesvirus restriction distinct from that against HIV-1. Thus, the dynamin-like MxB GTPase serves as a broadly acting intracellular restriction factor that controls retrovirus as well as herpesvirus infections.


Assuntos
Infecções por Herpesviridae/prevenção & controle , Herpesviridae/fisiologia , Mutação , Proteínas de Resistência a Myxovirus/genética , Replicação Viral/genética , Células A549 , Herpesviridae/genética , Infecções por Herpesviridae/virologia , Humanos , Imunidade Inata , Interferons , Proteínas de Resistência a Myxovirus/imunologia , Replicação Viral/imunologia
7.
Earth Planets Space ; 69(1): 142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32009833

RESUMO

A profile of broadband magnetotelluric stations was acquired between 2009 and 2016 at 35°-36°S in the Southern Volcanic Zone of the Chilean Andes to image the subduction zone and its relation with the volcanic arc at this latitude. This transect extends from the Coastal Cordillera across the Central Valley and the volcanic arc of the Principal Cordillera to the Argentine border. Two active volcanic complexes are found along this profile: Tatara-San Pedro is located on the modern volcanic front, and the Laguna del Maule volcanic field is found approximately 30 km to the east. The latter exhibits considerable signs of unrest, such as uplift rates of up to 25 cm/year, and has produced a high concentration of silicic eruptions in the last 25 ky. The data covered the period range from 0.001 to 1000 s. Robust processing techniques were used, including remote reference, and dimensionality was investigated by estimation of geoelectric strike, skew and analysis of the induction arrows. The data were modeled using a 2D inversion algorithm to produce a resistivity model which was consistent with surface geology and seismicity. The final resistivity model shows a generally resistive fore-arc structure, coincident with the tectonic environment, and a wide conductive region from the volcanic front to the east. This suggests a broad region of magmatism throughout the arc, related to three distinct magma bodies, associated with the Tatara-San Pedro and Laguna del Maule volcanic complexes and the Mariposa Geothermal System.

8.
J Virol ; 90(20): 9330-7, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512061

RESUMO

UNLABELLED: Type I interferons (IFNs) crucially contribute to host survival upon viral infections. Robust expression of type I IFNs (IFN-α/ß) and induction of an antiviral state critically depend on amplification of the IFN signal via the type I IFN receptor (IFNAR). A small amount of type I IFN produced early upon virus infection binds the IFNAR and activates a self-enhancing positive feedback loop, resulting in induction of large, protective amounts of IFN-α. Unexpectedly, we found robust, systemic IFN-α expression upon infection of IFNAR knockout mice with the orthomyxovirus Thogoto virus (THOV). The IFNAR-independent IFN-α production required in vivo conditions and was not achieved during in vitro infection. Using replication-incompetent THOV-derived virus-like particles, we demonstrate that IFNAR-independent type I IFN induction depends on viral polymerase activity but is largely independent of viral replication. To discover the cell type responsible for this effect, we used type I IFN reporter mice and identified CD11b(+) F4/80(+) myeloid cells within the peritoneal cavity of infected animals as the main source of IFNAR-independent type I IFN, corresponding to the particular tropism of THOV for this cell type. IMPORTANCE: Type I IFNs are crucial for the survival of a host upon most viral infections, and, moreover, they shape subsequent adaptive immune responses. Production of protective amounts of type I IFN critically depends on the positive feedback amplification via the IFNAR. Unexpectedly, we observed robust IFNAR-independent type I IFN expression upon THOV infection and unraveled molecular mechanisms and determined the tissue and cell type involved. Our data indicate that the host can effectively use alternative pathways to induce type I IFN responses if the classical feedback amplification is not available. Understanding how type I IFN can be produced in large amounts independently of IFNAR-dependent enhancement will identify mechanisms which might contribute to novel therapeutic strategies to fight viral pathogens.


Assuntos
Antígeno CD11b/metabolismo , Interferon Tipo I/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Peritônio/virologia , Receptor de Interferon alfa e beta/metabolismo , Thogotovirus/metabolismo , Animais , Humanos , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritônio/metabolismo , Transdução de Sinais/fisiologia , Replicação Viral/fisiologia
9.
Virology ; 404(2): 139-47, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20553924

RESUMO

La Crosse virus is a leading cause of pediatric encephalitis in the Midwestern United States and an emerging pathogen in the American South. The LACV glycoprotein Gc plays a critical role in entry as the virus attachment protein. A 22 amino acid hydrophobic region within Gc (1066-1087) was recently identified as the LACV fusion peptide. To further define the role of Gc (1066-1087) in virus entry, fusion, and neuropathogenesis, a panel of recombinant LACV (rLACV) fusion peptide mutant viruses was generated. Replication of mutant rLACVs was significantly reduced. In addition, the fusion peptide mutants demonstrated decreased fusion phenotypes relative to LACV-WT. Interestingly, these viruses maintained their ability to cause neuronal loss in culture, suggesting that the fusion peptide of LACV Gc is a determinant of properties associated with neuroinvasion (growth to high titer in muscle cells and a robust fusion phenotype), but not necessarily of neurovirulence.


Assuntos
Vírus La Crosse/genética , Proteínas Virais de Fusão/genética , Animais , Linhagem Celular , Cricetinae , Fibroblastos/virologia , Vírus La Crosse/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Proteínas Virais de Fusão/metabolismo , Replicação Viral
10.
Virology ; 385(2): 400-8, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19155037

RESUMO

Rift Valley fever virus (RVFV) is a highly pathogenic member of the family Bunyaviridae that needs to be handled under biosafety level (BSL) 3 conditions. Here, we describe reverse genetics systems to measure RVFV polymerase activity in mammalian cells and to generate virus-like particles (VLPs). Recombinant polymerase (L) and nucleocapsid protein (N), expressed together with a minireplicon RNA, formed transcriptionally active nucleocapsids. These could be packaged into VLPs by additional expression of viral glycoproteins. The VLPs resembled authentic virus particles and were able to infect new cells. After infection, VLP-associated nucleocapsids autonomously performed primary transcription, and co-expression of L and N in VLP-infected cells allowed subsequent replication and secondary transcription. Bunyaviruses are potently inhibited by a human interferon-induced protein, MxA. However, the affected step in the infection cycle is not entirely characterized. Using the VLP system, we demonstrate that MxA inhibits both primary and secondary transcriptions of RVFV. A set of infection assays distinguishing between virus attachment, entry, and subsequent RNA synthesis confirmed that MxA is able to target immediate early RNA synthesis of incoming RVFV particles. Thus, our reverse genetics systems are useful for dissecting individual steps of RVFV infection under non-BSL3 conditions.


Assuntos
Proteínas Recombinantes/metabolismo , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , Vírion/metabolismo , Animais , Anticorpos Monoclonais , Antivirais/metabolismo , Linhagem Celular , Chlorocebus aethiops , Proteínas de Ligação ao GTP/farmacologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Proteínas de Resistência a Myxovirus , Proteínas Recombinantes/genética , Células Vero , Virologia/métodos
11.
PLoS One ; 3(4): e2032, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18446221

RESUMO

Innate immunity is critically dependent on the rapid production of interferon in response to intruding viruses. The intracellular pathogen recognition receptors RIG-I and MDA5 are essential for interferon induction by viral RNAs containing 5' triphosphates or double-stranded structures, respectively. Viruses with a negative-stranded RNA genome are an important group of pathogens causing emerging and re-emerging diseases. We investigated the ability of genomic RNAs from substantial representatives of this virus group to induce interferon via RIG-I or MDA5. RNAs isolated from particles of Ebola virus, Nipah virus, Lassa virus, and Rift Valley fever virus strongly activated the interferon-beta promoter. Knockdown experiments demonstrated that interferon induction depended on RIG-I, but not MDA5, and phosphatase treatment revealed a requirement for the RNA 5' triphosphate group. In contrast, genomic RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus did not trigger interferon induction. Sensitivity of these RNAs to a 5' monophosphate-specific exonuclease indicates that the RIG-I-activating 5' triphosphate group was removed post-transcriptionally by a viral function. Consequently, RIG-I is unable to bind the RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus. These results establish RIG-I as a major intracellular recognition receptor for the genome of most negative-strand RNA viruses and define the cleavage of triphosphates at the RNA 5' end as a strategy of viruses to evade the innate immune response.


Assuntos
RNA Helicases DEAD-box/imunologia , Genoma Viral/genética , Interferons/imunologia , Vírus de RNA/genética , Linhagem Celular , Proteína DEAD-box 58 , Humanos , Fosfatos , Vírus de RNA/patogenicidade , RNA Viral/genética , Receptores Imunológicos , Virulência
12.
J Virol ; 80(10): 5059-64, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16641297

RESUMO

Double-stranded RNA (dsRNA) longer than 30 bp is a key activator of the innate immune response against viral infections. It is widely assumed that the generation of dsRNA during genome replication is a trait shared by all viruses. However, to our knowledge, no study exists in which the production of dsRNA by different viruses is systematically investigated. Here, we investigated the presence and localization of dsRNA in cells infected with a range of viruses, employing a dsRNA-specific antibody for immunofluorescence analysis. Our data revealed that, as predicted, significant amounts of dsRNA can be detected for viruses with a genome consisting of positive-strand RNA, dsRNA, or DNA. Surprisingly, however, no dsRNA signals were detected for negative-strand RNA viruses. Thus, dsRNA is indeed a general feature of most virus groups, but negative-strand RNA viruses appear to be an exception to that rule.


Assuntos
Vírus de DNA/genética , Vírus de DNA/metabolismo , Vírus de RNA/genética , Vírus de RNA/metabolismo , RNA de Cadeia Dupla/biossíntese , Animais , Anticorpos Monoclonais/metabolismo , Chlorocebus aethiops , Cricetinae , Imunofluorescência , Células HeLa , Humanos , RNA de Cadeia Dupla/imunologia , Células Vero
13.
J Interferon Cytokine Res ; 26(1): 1-7, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16426142

RESUMO

In virus-infected cells, double-stranded RNA (dsRNA) activates the transcription factor interferon (IFN) regulatory factor-3 (IRF-3), which stimulates type I IFN (IFN-alpha/beta) gene expression. In addition, dsRNA activates the enzyme RNA-activated protein kinase (PKR), which phosphorylates the eukaryotic initiation factor 2alpha (eIF2beta), thereby inhibiting mRNA translation. Adenoviruses express highly structured RNA molecules termed VA RNAs (VA(I)/VA(II)) known to specifically inhibit PKR. As PKR impairs expression from transfected cDNA constructs, plasmids encoding VA RNAs are widely used as enhancers of transgene expression. Here, we describe induction of IFN synthesis as a novel feature of VA RNAs. Transfection of a VA(I)/VA(II)-expressing plasmid was found to induce type I IFN production, resulting in activation of IFN-dependent genes, such as IFN-stimulated gene 56 (ISG56) or MxA, and the establishment of an antiviral state in transfected cells. Curiously, VA RNAs did not activate IRF-3, suggesting an alternative pathway of IFN induction. These data may be considered when using genetically modified adenoviruses as therapeutic agents and suggest caution in choosing VA RNA constructs as a means to increase expression of a gene of interest.


Assuntos
Adenoviridae/genética , Regulação da Expressão Gênica , Interferons/biossíntese , RNA Viral , eIF-2 Quinase/metabolismo , Adenoviridae/metabolismo , Animais , Linhagem Celular , Genes Reporter , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferons/genética , Regiões Promotoras Genéticas
14.
J Biol Chem ; 279(30): 31471-7, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15150262

RESUMO

Many viruses subvert the cellular interferon (IFN) system with so-called IFN antagonists. Bunyamwera virus (BUNV) belongs to the family Bunyaviridae and is transmitted by arthropods. We have recently identified the nonstructural protein NSs of BUNV as a virulence factor that inhibits IFN-beta gene expression in the mammalian host. Here, we demonstrate that NSs targets the RNA polymerase II (RNAP II) complex. The C-terminal domain (CTD) of RNAP II consists of 52 repeats of the consensus sequence YSPTSPS. Phosphorylation at serine 5 is required for efficient initiation of transcription, and subsequent phosphorylation at serine 2 is required for mRNA elongation and 3'-end processing. In BUNV-infected mammalian cells, serine 5 phosphorylation occurred normally. Furthermore, RNAP II was able to bind to the IFN-beta gene promoter as revealed by chromatin immunoprecipitation analysis, indicating that the initiation of transcription was not disturbed by NSs. However, NSs prevented CTD phosphorylation at serine 2, suggesting a block in transition from initiation to elongation. Surprisingly, no interference with CTD phosphorylation was observed in insect cells. Our results indicate that BUNV uses an unconventional mechanism to block IFN synthesis in the mammalian host by directly dysregulating RNAP II. Moreover, by inducing a general transcriptional block, NSs may contribute to the lytic infection observed in mammalian cells as opposed to persistent infection in the insect host.


Assuntos
Vírus Bunyamwera/patogenicidade , Interferon beta/antagonistas & inibidores , RNA Polimerase II/antagonistas & inibidores , Proteínas não Estruturais Virais/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Expressão Gênica/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Humanos , Técnicas In Vitro , Fosforilação , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA