Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(2): e0334923, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38179918

RESUMO

Microsporidia cause disease in many beneficial insects, including honey bees, yet few pathogen control tools are available for protecting these important organisms against infection. Some evidence suggests that microsporidia possess a reduced number of genes encoding DNA repair proteins. We hypothesized that microsporidia would thus be susceptible to treatment with DNA-damaging agents and tested this hypothesis using a novel, rapid method for achieving robust and homogenous experimental infection of large numbers of newly emerged honey bees with one of its microsporidia pathogens, Vairimorpha (Nosema) ceranae. In carrying out these experiments, we found this novel V. ceranae inoculation method to have similar efficacy as other traditional methods. We show that the DNA-damaging agent bleomycin reduces V. ceranae levels, with minimal but measurable effects on honey bee survival and increased expression of midgut cellular stress genes, including those encoding SHSP. Increased expression of UpdlC suggests the occurrence of epithelial regeneration, which may contribute to host resistance to bleomycin treatment. While bleomycin does reduce infection levels, host toxicity issues may preclude its use in the field. However, with further work, bleomycin may provide a useful tool in the research setting as a potential selection agent for genetic modification of microsporidia.IMPORTANCEMicrosporidia cause disease in many beneficial insects, yet there are few tools available for control in the field or laboratory. Based on the reported paucity of DNA repair enzymes found in microsporidia genomes, we hypothesized that these obligate intracellular parasites would be sensitive to DNA damage. In support of this, we observed that the well-characterized DNA damage agent bleomycin can reduce levels of the microsporidia Vairimorpha (Nosema) ceranae in experimental infections in honey bees. Observation of slightly reduced honey bee survival and evidence of sublethal toxicity likely preclude the use of bleomycin in the field. However, this work identifies bleomycin as a compound that merits further exploration for use in research laboratories as a potential selection agent for generating genetically modified microsporidia.


Assuntos
Microsporídios , Nosema , Abelhas , Animais , Nosema/genética , DNA
2.
J Exp Biol ; 224(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34477881

RESUMO

Honey bee colonies in the USA have suffered from increased die-off in the last few years with a complex set of interacting stresses playing a key role. With changing climate, an increase in the frequency of severe weather events, such as heat waves, is anticipated. Understanding how these changes may contribute to stress in honey bees is crucial. Individual honey bees appear to have a high capacity to endure thermal stress. One reason for this high-level endurance is likely their robust heat shock response (HSR), which contributes to thermotolerance at the cellular level. However, less is known about other mechanisms of thermotolerance, especially those operating at the tissue level. To elucidate other determinants of resilience in this species, we used thermal stress coupled with RNAseq and identified broad transcriptional remodeling of a number of key signaling pathways in the honey bee, including those pathways known to be involved in digestive tract regeneration in the fruit fly such as the Hippo and JAK/STAT pathways. We also observed cell death and shedding of epithelial cells, which likely leads to induction of this regenerative transcriptional program. We found that thermal stress affects many of these pathways in other tissues, suggesting a shared program of damage response. This study provides important foundational characterization of the tissue damage response program in this key pollinating species. In addition, our data suggest that a robust regeneration program may also be a critical contributor to thermotolerance at the tissue level, a possibility which warrants further exploration in this and other species.


Assuntos
Resposta ao Choque Térmico , Termotolerância , Animais , Abelhas , Trato Gastrointestinal , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA