Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0301709, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743649

RESUMO

Rogue waves are sudden and extreme occurrences, with heights that exceed twice the significant wave height of their neighboring waves. The formation of rogue waves has been attributed to several possible mechanisms such as linear superposition of random waves, dispersive focusing, and modulational instability. Recently, nonlinear Fourier transforms (NFTs), which generalize the usual Fourier transform, have been leveraged to analyze oceanic rogue waves. Next to the usual linear Fourier modes, NFTs can additionally uncover nonlinear Fourier modes in time series that are usually hidden. However, so far only individual oceanic rogue waves have been analyzed using NFTs in the literature. Moreover, the completely different types of nonlinear Fourier modes have been observed in these studies. Exploiting twelve years of field measurement data from an ocean buoy, we apply the nonlinear Fourier transform (NFT) for the nonlinear Schrödinger equation (NLSE) (referred to NLSE-NFT) to a large dataset of measured rogue waves. While the NLSE-NFT has been used to analyze rogue waves before, this is the first time that it is systematically applied to a large real-world dataset of deep-water rogue waves. We categorize the measured rogue waves into four types based on the characteristics of the largest nonlinear mode: stable, small breather, large breather and (envelope) soliton. We find that all types can occur at a single site, and investigate which conditions are dominated by a single type at the measurement site. The one and two-dimensional Benjamin-Feir indices (BFIs) are employed to examine the four types of nonlinear spectra. Furthermore, we verify on a part of the data set that for the localized types, the largest nonlinear Fourier mode can be attributed directly to the rogue wave, and investigate the relation between the height of the rogue waves and that of the dominant nonlinear Fourier mode. While the dominant nonlinear Fourier mode in general only contributes a small fraction of the rogue wave, we find that soliton modes can contribute up to half of the rogue wave. Since the NLSE does not account for directional spreading, the classification is repeated for the first quartile with the lowest directional spreading for each type. Similar results are obtained.


Assuntos
Análise de Fourier , Oceanos e Mares , Dinâmica não Linear , Filipinas
2.
J Lightwave Technol ; 42(2): 560-571, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586243

RESUMO

While probabilistic constellation shaping (PCS) enables rate and reach adaption with finer granularity [1], it imposes signal processing challenges at the receiver. Since the distribution of PCS-quadrature amplitude modulation (QAM) signals tends to be Gaussian, conventional blind polarization demultiplexing algorithms are not suitable for them [2]. It is known that independently and identically distributed (iid) Gaussian signals, when mixed, cannot be recovered/separated from their mixture. For PCS-QAM signals, there are algorithms such as [3], [4] which are designed by extending conventional blind algorithms used for uniform QAM signals. In these algorithms, an initialization point is obtained by processing only a part of the mixed signal, which have non-Gaussian statistics. In this paper, we propose an alternative method wherein we add temporal correlations at the transmitter, which are subsequently exploited at the receiver in order to separate the polarizations. We will refer to the proposed method as frequency domain (FD) joint diagonalization (JD) probability aware-multi modulus algorithm (pr-MMA), and it is suited to channels with moderate polarization mode dispersion (PMD) effects. Furthermore, we extend our previously proposed JD-MMA [5] by replacing the standard MMA with a pr-MMA, improving its performance. Both FDJD-pr-MMA and JD-pr-MMA are evaluated for a diverse range of PCS (entropy 𝓗) over a first-order PMD channel that is simulated in a proof-of-concept setup. A MMA initialized with a memoryless constant modulus algorithm (CMA) is used as a benchmark. We show that at a differential group delay (DGD) of 10% of symbol period Tsymb and 18 dB SNR/pol., JD-pr-MMA successfully demultiplexes the PCS signals, while CMA-MMA fails drastically. Furthermore, we demonstrate that the newly proposed FDJD-pr-MMA is robust against moderate PMD effects by evaluating it over a DGD of up to 40% of Tsymb. Our results show that the proposed FDJD-pr-MMA successfully equalizes PMD channels with a DGD up to 20% of Tsymb.

3.
Entropy (Basel) ; 22(6)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-33286411

RESUMO

The performance of various nonlinear frequency division multiplexed (NFDM) fiber-optic transmission systems has been observed to decrease with increasing signal duration. For a class of NFDM systems known as b-modulators, we show that the nonlinear bandwidth, signal duration, and power are coupled when singularities in the nonlinear spectrum are avoided. When the nonlinear bandwidth is fixed, the coupling results in an upper bound on the transmit power that decreases with increasing signal duration. Signal-to-noise ratios are consequently expected to decrease, which can help explain drops in performance observed in practice. Furthermore, we show that there is often a finite bound on the transmit power of b-modulators even if spectral singularities are allowed.

4.
Opt Express ; 26(21): 27978-27990, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469854

RESUMO

The recently proposed b-modulation method for nonlinear Fourier transform-based fiber-optic transmission offers explicit control over the duration of the generated pulses and therewith solves a longstanding practical problem. The currently used b-modulation however suffers from a fundamental energy barrier. There is a limit to the energy of the pulses, in normalized units, that can be generated. In this paper, we discuss how the energy barrier can be shifted by proper design of the carrier waveform and the modulation alphabet. In an experiment, it is found that the improved b-modulator achieves both a higher Q-factor and a further reach than a comparable conventional b-modulator. Furthermore, it performs significantly better than conventional approaches that modulate the reflection coefficient.

5.
IEEE Trans Neural Netw Learn Syst ; 29(1): 167-182, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27831891

RESUMO

This paper analyzes data-based online nonlinear extremum-seeker (DONE), an online optimization algorithm that iteratively minimizes an unknown function based on costly and noisy measurements. The algorithm maintains a surrogate of the unknown function in the form of a random Fourier expansion. The surrogate is updated whenever a new measurement is available, and then used to determine the next measurement point. The algorithm is comparable with Bayesian optimization algorithms, but its computational complexity per iteration does not depend on the number of measurements. We derive several theoretical results that provide insight on how the hyperparameters of the algorithm should be chosen. The algorithm is compared with a Bayesian optimization algorithm for an analytic benchmark problem and three applications, namely, optical coherence tomography, optical beam-forming network tuning, and robot arm control. It is found that the DONE algorithm is significantly faster than Bayesian optimization in the discussed problems while achieving a similar or better performance.

6.
Opt Lett ; 40(24): 5722-5, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670496

RESUMO

Several sensor-less wavefront aberration correction methods that correct nonlinear wavefront aberrations by maximizing the optical coherence tomography (OCT) signal are tested on an OCT setup. A conventional coordinate search method is compared to two model-based optimization methods. The first model-based method takes advantage of the well-known optimization algorithm (NEWUOA) and utilizes a quadratic model. The second model-based method (DONE) is new and utilizes a random multidimensional Fourier-basis expansion. The model-based algorithms achieve lower wavefront errors with up to ten times fewer measurements. Furthermore, the newly proposed DONE method outperforms the NEWUOA method significantly. The DONE algorithm is tested on OCT images and shows a significantly improved image quality.


Assuntos
Aumento da Imagem/métodos , Modelos Teóricos , Fenômenos Ópticos , Tomografia de Coerência Óptica/métodos , Algoritmos , Artefatos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA