Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 111(24): 3906-3910, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37939708

RESUMO

Case studies of patients with amygdala damage or those receiving direct amygdala stimulation have informed our understanding of the amygdala's role in emotion and cognition. These foundational studies illustrate how the human amygdala influences our present behavior and prioritizes memories of our past in service of future experiences. This broad influence makes the amygdala a novel target for clinical neuromodulation.


Assuntos
Tonsila do Cerebelo , Emoções , Humanos , Emoções/fisiologia , Tonsila do Cerebelo/fisiologia , Cognição
2.
Front Behav Neurosci ; 15: 780326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987362

RESUMO

Post-traumatic stress disorder (PTSD) is associated with decreased activity in the prefrontal cortex. PTSD-like pathophysiology and behaviors have been observed in rodents exposed to a single prolonged stress (SPS) procedure. When animals are left alone for 7 days after SPS treatment, they show increased anxiety-like behavior and impaired extinction of conditioned fear, and reduced activity in the prefrontal cortex. Here, we tested the hypothesis that daily optogenetic stimulation of the infralimbic region (IL) of the medial prefrontal cortex (mPFC) during the 7 days after SPS would reverse SPS effects on anxiety and fear extinction. Male Sprague-Dawley rats underwent SPS and then received daily optogenetic stimulation (20 Hz, 2 s trains, every 10 s for 15 min/day) of glutamatergic neurons of the left or right IL for seven days. After this incubation period, rats were tested in the elevated plus-maze (EPM). Twenty-four hours after the EPM test, rats underwent auditory fear conditioning (AFC), extinction training and a retention test. SPS increased anxiety-like behavior in the EPM task and produced a profound impairment in extinction of AFC. Optogenetic stimulation of the left IL, but not right, during the 7-day incubation period reversed the extinction impairment. Optogenetic stimulation did not reverse the increased anxiety-like behavior, suggesting that the extinction effects are not due to a treatment-induced reduction in anxiety. Results indicate that increased activity of the left IL after traumatic experiences can prevent development of extinction impairments. These findings suggest that non-invasive brain stimulation may be a useful tool for preventing maladaptive responses to trauma.

3.
Neuropsychopharmacology ; 46(6): 1172-1182, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33007779

RESUMO

The basolateral amygdala (BLA) modulates the consolidation of dorsal hippocampus (DH)-dependent spatial and dorsolateral striatum (DLS)-dependent cued-response memories, often in competition with one another. Evidence suggests that a critical mechanism for BLA influences on memory consolidation is via effects on activity-regulated cytoskeletal-associated protein (ARC) in downstream brain regions. However, the circuitry by which the BLA modulates ARC in multiple competing memory systems remains unclear. Prior evidence indicates that optogenetic stimulation of BLA projections to the medial entorhinal cortex (mEC) enhances the consolidation of spatial learning and impairs the consolidation of cued-response learning, suggesting this pathway provides a circuit for favoring one system over another. Therefore, we hypothesized the BLA-mEC pathway mediates effects on downstream ARC-based synaptic plasticity related to these competing memory systems. To address this, male and female Sprague-Dawley rats underwent spatial or cued-response Barnes maze training and, 45 min later, were sacrificed for ARC analysis in synaptoneurosomes from the DH and DLS. Initial experiments found that spatial training alone increased ARC levels in the DH above those observed in control rats and rats that underwent a cued-response version of the task. Postspatial training optogenetic stimulation of the BLA-mEC pathway altered the balance of ARC expression in the DH vs. DLS, specifically shifting the balance in favor of the DH-based spatial memory system, although the precise region of ARC changes differed by sex. These findings suggest that BLA-mEC pathway influences on ARC in downstream regions are a mechanism by which the BLA can favor one memory system over another.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo , Animais , Córtex Entorrinal , Feminino , Hipocampo , Masculino , Ratos , Ratos Sprague-Dawley , Memória Espacial
4.
J Neurosci ; 38(11): 2698-2712, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29431646

RESUMO

Although evidence suggests that the basolateral amygdala (BLA) and dorsal hippocampus (DH) work together to influence the consolidation of spatial/contextual learning, the circuit mechanism by which the BLA selectively modulates spatial/contextual memory consolidation is not clear. The medial entorhinal cortex (mEC) is a critical region in the hippocampus-based system for processing spatial information. As an efferent target of the BLA, the mEC is a candidate by which the BLA influences the consolidation of such learning. To address several questions regarding this issue, male Sprague Dawley rats received optogenetic manipulations of different BLA afferents immediately after training in different learning tasks. Optogenetic stimulation of the BLA-mEC pathway using ChR2(E123A) after spatial and cued-response Barnes maze training enhanced and impaired retention, respectively, whereas optical inhibition of the pathway using eNpHR3.0 produced trends in the opposite direction. Similar stimulation of the BLA-posterior dorsal striatum pathway had no effect. BLA-mEC stimulation also selectively enhanced retention for the contextual, but not foot shock, component of a modified contextual fear-conditioning procedure. In both sets of experiments, only stimulation using bursts of 8 Hz light pulses significantly enhanced retention, suggesting the importance of driving activity in this frequency range. An 8 Hz stimulation of the BLA-mEC pathway increased local field potential power in the same frequency range in the mEC and in the DH. Together, the present findings suggest that the BLA modulates the consolidation of spatial/contextual memory via projections to the mEC and that activity within the 8 Hz range is critical for this modulation.SIGNIFICANCE STATEMENT The mechanism by which the basolateral amygdala (BLA) influences the consolidation of spatial/contextual memory is unknown. Using an optogenetic approach with multiple behavioral procedures, we found that immediate posttraining 8 Hz stimulation of BLA projections to the medial entorhinal cortex (mEC) enhanced retention for spatial/contextual memory, impaired retention for cued-response memory, and had no effect on foot shock learning for contextual fear conditioning. Electrophysiological recordings confirmed that 8 Hz stimulation of this pathway increased activity in the 8 Hz range in the mEC and in the dorsal hippocampus, a region critical for spatial memory consolidation. This suggests that coordinated BLA activity with downstream regions in the 8 Hz activity range immediately after training is important for consolidation of multiple memory forms.


Assuntos
Tonsila do Cerebelo/fisiologia , Córtex Entorrinal/fisiologia , Aprendizagem/fisiologia , Aprendizagem Espacial/fisiologia , Vias Aferentes/fisiologia , Animais , Condicionamento Psicológico , Sinais (Psicologia) , Eletrochoque , Masculino , Aprendizagem em Labirinto , Memória/fisiologia , Consolidação da Memória , Optogenética , Ratos , Ratos Sprague-Dawley , Ritmo Teta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA