Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Viruses ; 15(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36992483

RESUMO

PRRSV infects CD163-positive macrophages and skews their polarization toward an M2 phenotype, followed by T-cell inactivation. In our previous study, we found that recombinant protein A1 antigen derived from PRRSV-2 was a potential vaccine or adjuvant for immunization against PRRSV-2 infection due to its ability to repolarize macrophages into M1 subtype, thereby reducing CD163 expression for viral entry and promoting immunomodulation for Th1-type responses, except for stimulating Toll-like receptor (TLR) activation. The aim of our current study was to evaluate the effects of another two recombinant antigens, A3 (ORF6L5) and A4 (NLNsp10L11), for their ability to trigger innate immune responses including TLR activation. We isolated pulmonary alveolar macrophages (PAMs) from 8- to 12-week-old specific pathogen free (SPF) piglets and stimulated them with PRRSV (0.01 MOI and 0.05 MOI) or antigens. We also investigated the T-cell differentiation by immunological synapse activation of PAMs and CD4+ T-cells in the cocultured system. To confirm the infection of PRRSV in PAMs, we checked the expression of TLR3, 7, 8, and 9. Our results showed that the expression of TLR3, 7, and 9 were significantly upregulated in PAMs by A3 antigen induction, similar to the extent of PRRSV infection. Gene profile results showed that A3 repolarizes macrophages into the M1 subtype potently, in parallel with A1, as indicated by significant upregulation of proinflammatory genes (TNF-α, IL-6, IL-1ß and IL-12). Upon immunological synapse activation, A3 potentially differentiated CD4 T cells into Th1 cells, determined by the expression of IL-12 and IFN-γ secretion. On the contrary, antigen A4 promoted regulatory T cell (T-reg) differentiation by significant upregulation of IL-10 expression. Finally, we concluded that the PRRSV-2 recombinant protein A3 provided better protection against PRRSV infection, suggested by its capability to reeducate immunosuppressive M2 macrophages into proinflammatory M1 cells. As M1 macrophages are prone to be functional antigen-presenting cells (APCs), they can call for TLR activation and Th1-type immune response within the immunological synapse.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Receptor 3 Toll-Like , Receptores Toll-Like , Interleucina-12 , Imunidade Inata , Imunomodulação , Proteínas Recombinantes/genética
2.
Vaccines (Basel) ; 9(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34579246

RESUMO

The polarization status of porcine alveolar macrophages (PAMs) determines the infectivity of porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV infection skews macrophage polarization toward an M2 phenotype, followed by T-cells inactivation. CD163, one of the scavenger receptors of M2 macrophages, has been described as a putative receptor for PRRSV. In this study, we examined two types of PRRSV-2-derived recombinant antigens, A1 (g6Ld10T) and A2 (lipo-M5Nt), for their ability to mediate PAM polarization and T helper (Th1) response. A1 and A2 were composed of different combination of ORF5, ORF6, and ORF7 in full or partial length. To enhance the adaptive immunity, they were conjugated with T cells epitopes or lipidated elements, respectively. Our results showed that CD163+ expression on PAMs significantly decreased after being challenged with A1 but not A2, followed by a significant increase in pro-inflammatory genes (TNF-α, IL-6, and IL-12). In addition, next generation sequencing (NGS) data show an increase in T-cell receptor signaling in PAMs challenged with A1. Using a co-culture system, PAMs challenged with A1 can induce Th1 activation by boosting IFN-γ and IL-12 secretion and TNF-α expression. In terms of innate and T-cell-mediated immunity, we conclude that A1 is regarded as a potential vaccine for immunization against PRRSV infection due to its ability to reverse the polarization status of PAMs toward pro-inflammatory phenotypes, which in turn reduces CD163 expression for viral entry and increases immunomodulation for Th1-type response.

3.
J Cell Mol Med ; 23(2): 1257-1267, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30456891

RESUMO

M2-polarized macrophages, on one hand, can promote tumour vascularization by producing proangiogenic factors, such as vascular endothelial growth factor (VEGF). On the other hand, the expression of VEGF receptors (VEGFR) in this cell lineage was also reported. Although the function of VEGF/VEGFR axis plays a pivotal role in macrophages infiltration and angiogenesis, however, there is still lack of the direct evidence to show the role of VEGF as an autocrine operating in M2 macrophages, particularly for immunomodulation. In our study, we surprisingly discovered that M2 macrophages polarized by baicalin can simultaneously express VEGF and its receptors. Taking advantage of this unique culture system, we were able to investigate the biological activity of M2 macrophages in response to the autocrine VEGF milieu. Our results showed that the expression of programmed death-ligand 1 (PD-L1) on M2 macrophages was significantly up-regulated in autocrine VEGF milieu. Through the blockade of autocrine VEGF signalling, PD-L1 expression on M2 macrophages was dramatically down-regulated. Furthermore, transplantation of PD-L1+ M2 macrophage stimulated by autocrine VEGF into allogeneic mice significantly suppressed host CD4+ /CD8+ T cells in the peripheral blood and increased CD4+ CD25+ regulatory T cells in the bone marrow. In conclusion, our findings provide a novel biological basis to support the current successful strategy using combined VEGF/PD-1 signalling blockade in cancer therapy.


Assuntos
Comunicação Autócrina/imunologia , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Macrófagos/imunologia , Linfócitos T Reguladores/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/imunologia , Animais , Axitinibe/farmacologia , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Feminino , Flavonoides/farmacologia , Regulação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/transplante , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Inibidores de Proteínas Quinases/farmacologia , Células RAW 264.7 , Transdução de Sinais , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Transplante Homólogo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA