Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
MAbs ; 15(1): 2248671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37610144

RESUMO

Identification of favorable biophysical properties for protein therapeutics as part of developability assessment is a crucial part of the preclinical development process. Successful prediction of such properties and bioassay results from calculated in silico features has potential to reduce the time and cost of delivering clinical-grade material to patients, but nevertheless has remained an ongoing challenge to the field. Here, we demonstrate an automated and flexible machine learning workflow designed to compare and identify the most powerful features from computationally derived physiochemical feature sets, generated from popular commercial software packages. We implement this workflow with medium-sized datasets of human and humanized IgG molecules to generate predictive regression models for two key developability endpoints, hydrophobicity and poly-specificity. The most important features discovered through the automated workflow corroborate several previous literature reports, and newly discovered features suggest directions for further research and potential model improvement.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Humanos , Anticorpos Monoclonais/química , Aprendizado de Máquina
2.
J Comput Biol ; 30(1): 70-81, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35727687

RESUMO

Codon optimization of a DNA sequence can significantly increase efficiency of protein expression, reducing the cost to manufacture biologic pharmaceuticals. Although directed methods based on such factors as codon usage bias and GC nucleotide content are often used to optimize protein expression, undirected optimization using machine learning could further improve the process by capitalizing on undiscovered patterns that exist within real DNA sequences. To explore this hypothesis, Chinese hamster DNA sequences were used to train a recurrent neural network (RNN) model of codon optimization. The model was used to generate optimized DNA sequence based on an input amino acid sequence for the example receptor programmed death-ligand 1 and for an example monoclonal antibody. When RNN-optimized sequences were transfected transiently or stably into Chinese hamster ovary cells, the resulting protein expression was as high or higher than that produced by DNA sequences optimized by conventional algorithms.


Assuntos
Algoritmos , Redes Neurais de Computação , Cricetinae , Animais , Células CHO , Cricetulus , Códon/genética
3.
Antiviral Res ; 199: 105271, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35240221

RESUMO

COVID-19, an infectious disease caused by the SARS-CoV-2 virus, emerged globally in early 2020 and has remained a serious public health issue. To date, although several preventative vaccines have been approved by FDA and EMA, vaccinated individuals increasingly suffer from breakthrough infections. Therapeutic antibodies may provide an alternative strategy to neutralize viral infection and treat serious cases; however, the clinical data and our experiments show that some FDA-approved monoclonal antibodies lose function against COVID-19 variants such as Omicron. Therefore, in this study, we present a novel therapeutic agent, SI-F019, an ACE2-Fc fusion protein whose neutralization efficiency is not compromised, but actually strengthened, by the mutations of dominant variants including Omicron. Comprehensive biophysical analyses revealed the mechanism of increased inhibition to be enhanced interaction of SI-F019 with all the tested spike variants, in contrast to monoclonal antibodies which tended to show weaker binding to some variants. The results imply that SI-F019 may be a broadly useful agent for treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais/uso terapêutico , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
4.
Antibodies (Basel) ; 11(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35076451

RESUMO

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase whose proliferative effects can contribute to the development of many types of solid tumors when overexpressed. For this reason, EGFR inhibitors such as cetuximab can play an important role in treating cancers such as colorectal cancer and head and neck cancer. Cetuximab is a chimeric monoclonal antibody containing mouse variable regions that bind to EGFR and prevent it from signaling. Although cetuximab has been used clinically since 2004 to successfully control solid tumors, advances in protein engineering have created the opportunity to address some of its shortcomings. In particular, the presence of mouse sequences could contribute to immunogenicity in the form of anti-cetuximab antibodies, and an occupied glycosylation site in FR3 can contribute to hypersensitivity reactions and product heterogeneity. Using simple framework graft or sequence-/structure-guided approaches, cetuximab was humanized onto 11 new frameworks. In addition to increasing humanness and removing the VH glycosylation site, dynamic light scattering revealed increases in stability, and bio-layer interferometry confirmed minimal changes in binding affinity, with patterns emerging across the humanization method. This work demonstrates the potential to improve the biophysical and clinical properties of first-generation protein therapeutics and highlights the advantages of computationally guided engineering.

5.
ChemMedChem ; 16(7): 1077-1081, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33369163

RESUMO

Tubulysins have emerged in recent years as a compelling drug class for delivery to tumor cells via antibodies. The ability of this drug class to exert bystander activity while retaining potency against multidrug-resistant cell lines differentiates them from other microtubule-disrupting agents. Tubulysin M, a synthetic analogue, has proven to be active and well tolerated as an antibody-drug conjugate (ADC) payload, but has the liability of being susceptible to acetate hydrolysis at the C11 position, leading to attenuated potency. In this work, we examine the ability of the drug-linker and conjugation site to preserve acetate stability. Our findings show that, in contrast to a more conventional protease-cleavable dipeptide linker, the ß-glucuronidase-cleavable glucuronide linker protects against acetate hydrolysis and improves ADC activity in vivo. In addition, site-specific conjugation can positively impact both acetate stability and in vivo activity. Together, these findings provide the basis for a highly optimized delivery strategy for tubulysin M.


Assuntos
Imunoconjugados/química , Oligopeptídeos/química , Animais , Humanos , Imunoconjugados/uso terapêutico , Camundongos , Estrutura Molecular , Oligopeptídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mol Cancer Ther ; 20(2): 320-328, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33288628

RESUMO

Auristatins, a class of clinically validated anti-tubulin agents utilized as payloads in antibody-drug conjugates, are generally classified by their membrane permeability and the extent of cytotoxic bystander activity on neighboring cells after targeted delivery. The drugs typically fall within two categories: membrane permeable monomethyl auristatin E-type molecules with high bystander activities and susceptibility to efflux pumps, or charged and less permeable monomethyl auristatin F (MMAF) analogs with low bystander activities and resistance to efflux pumps. Herein, we report the development of novel auristatins that combine the attributes of each class by having both bystander activity and cytotoxicity on multidrug-resistant (MDR+) cell lines. Structure-based design focused on the hydrophobic functionalization of the N-terminal N-methylvaline of the MMAF scaffold to increase cell permeability. The resulting structure-activity relationships of the new auristatins demonstrate that optimization of hydrophobicity and structure can lead to highly active free drugs and antibody-drug conjugates with in vivo bystander activities.


Assuntos
Aminobenzoatos/uso terapêutico , Oligopeptídeos/uso terapêutico , Aminobenzoatos/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Oligopeptídeos/farmacologia , Ratos , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 30(14): 127241, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527543

RESUMO

The tubulysins are an emerging antibody-drug conjugate (ADC) payload that maintain potent anti-proliferative activity against cells that exhibit the multi-drug resistant (MDR) phenotype. These drugs possess a C-11 acetate known to be hydrolytically unstable in plasma, and loss of the acetate significantly attenuates cytotoxicity. Structure-activity relationship studies were undertaken to identify stable C-11 tubulysin analogues that maintain affinity for tubulin and potent cytotoxicity. After identifying several C-11 alkoxy analogues that possess comparable biological activity to tubulysin M with significantly improved plasma stability, additional analogues of both the Ile residue and N-terminal position were synthesized. These studies revealed that minor changes within the tubulin binding site of tubulysin can profoundly alter the activity of this chemotype, particularly against MDR-positive cell types.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Antineoplásicos/sangue , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Oligopeptídeos/sangue , Oligopeptídeos/química , Relação Estrutura-Atividade
8.
Mol Cancer Ther ; 17(12): 2633-2642, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242091

RESUMO

Antibody-drug conjugates (ADCs) are a therapeutic modality that enables the targeted delivery of cytotoxic drugs to cancer cells. Identification of active payloads with unique mechanisms of action is a key aim of research efforts in the field. Herein, we report the development of inhibitors of nicotinamide phosphoribosyltransferase (NAMPT) as a novel payload for ADC technology. NAMPT is a component of a salvage biosynthetic pathway for NAD, and inhibition of this enzyme results in disruption of primary cellular metabolism leading to cell death. Through derivatization of the prototypical NAMPT inhibitor FK-866, we identified potent analogues with chemical functionality that enables the synthesis of hydrophilic enzyme-cleavable drug linkers. The resulting ADCs displayed NAD depletion in both cell-based assays and tumor xenografts. Antitumor efficacy is demonstrated in five mouse xenograft models using ADCs directed to indication-specific antigens. In rat toxicology models, a nonbinding control ADC was tolerated at >10-fold the typical efficacious dose used in xenografts. Moderate, reversible hematologic effects were observed with ADCs in rats, but there was no evidence for the retinal and cardiac toxicities reported for small-molecule inhibitors. These findings introduce NAMPT inhibitors as active and well-tolerated payloads for ADCs with promise to improve the therapeutic window of NAMPT inhibition and enable application in clinical settings.


Assuntos
Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Imunoconjugados/farmacologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Feminino , Humanos , Imunoconjugados/química , Camundongos SCID , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Cancer Ther ; 17(8): 1752-1760, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29866744

RESUMO

Although antibody-drug conjugates (ADCs) find increasing applications in cancer treatment, de novo or treatment-emergent resistance mechanisms may impair clinical benefit. Two resistance mechanisms that emerge under prolonged exposure include upregulation of transporter proteins that confer multidrug resistance (MDR+) and loss of cognate antigen expression. New technologies that circumvent these resistance mechanisms may serve to extend the utility of next-generation ADCs. Recently, we developed the quaternary ammonium linker system to expand the scope of conjugatable payloads to include tertiary amines and applied the linker to tubulysins, a highly potent class of tubulin binders that maintain activity in MDR+ cell lines. In this work, tubulysin M, which contains an unstable acetate susceptible to enzymatic hydrolysis, and two stabilized tubulysin analogues were prepared as quaternary ammonium-linked glucuronide-linkers and assessed as ADC payloads in preclinical models. The conjugates were potent across a panel of cancer cell lines and active in tumor xenografts, including those displaying the MDR+ phenotype. The ADCs also demonstrated potent bystander activity in a coculture model comprised of a mixture of antigen-positive and -negative cell lines, and in an antigen-heterogeneous tumor model. Thus, the glucuronide-tubulysin drug-linkers represent a promising ADC payload class, combining conjugate potency in the presence of the MDR+ phenotype and robust activity in models of tumor heterogeneity in a structure-dependent manner. Mol Cancer Ther; 17(8); 1752-60. ©2018 AACR.


Assuntos
Glucuronídeos/metabolismo , Imunoconjugados/metabolismo , Animais , Humanos , Camundongos , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
10.
PLoS One ; 11(8): e0160890, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27518442

RESUMO

The auristatin class of microtubule destabilizers are highly potent cytotoxic agents against several cancer cell types when delivered as antibody drug conjugates. Here we describe the high resolution structures of tubulin in complex with both monomethyl auristatin E and F and unambiguously define the trans-configuration of both ligands at the Val-Dil amide bond in their tubulin bound state. Moreover, we illustrate how peptidic vinca-site agents carrying terminal carboxylate residues may exploit an observed extended hydrogen bond network with the M-loop Arg278 to greatly improve the affinity of the corresponding analogs and to maintain the M-loop in an incompatible conformation for productive lateral tubulin-tubulin contacts in microtubules. Our results highlight a potential, previously undescribed molecular mechanism by which peptidic vinca-site agents maintain unparalleled potency as microtubule-destabilizing agents.


Assuntos
Aminobenzoatos/química , Aminobenzoatos/farmacologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Aminobenzoatos/metabolismo , Animais , Modelos Moleculares , Oligopeptídeos/metabolismo , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Ovinos , Estereoisomerismo , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacologia , Vimblastina/metabolismo , Vimblastina/farmacologia
11.
J Mol Biol ; 428(15): 2981-8, 2016 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-27395016

RESUMO

Microtubule-targeting agents are among the most powerful drugs used in chemotherapy to treat cancer patients. Pironetin is a natural product that displays promising anticancer properties by binding to and potently inhibiting tubulin assembly into microtubules; however, its molecular mechanism of action remained obscure. Here, we solved the crystal structure of the tubulin-pironetin complex and found that the compound covalently binds to Cys316 of α-tubulin. The structure further revealed that pironetin perturbs the T7 loop and helix H8 of α-tubulin. Since both these elements are essential for establishing longitudinal tubulin contacts in microtubules, this result explains how pironetin inhibits the formation of microtubules. Together, our data define the molecular details of the pironetin binding site on α-tubulin and thus offer a promising basis for the rational design of pironetin variants with improved activity profiles. They further extend our knowledge on strategies evolved by natural products to target and perturb the microtubule cytoskeleton.


Assuntos
Antineoplásicos/farmacocinética , Microtúbulos/metabolismo , Pironas/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Sítios de Ligação , Produtos Biológicos/farmacologia , Bovinos , Elementos Estruturais de Proteínas , Ovinos
12.
Mol Cancer Ther ; 15(5): 938-45, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944920

RESUMO

A quaternary ammonium-based drug-linker has been developed to expand the scope of antibody-drug conjugate (ADC) payloads to include tertiary amines, a functional group commonly present in biologically active compounds. The linker strategy was exemplified with a ß-glucuronidase-cleavable auristatin E construct. The drug-linker was found to efficiently release free auristatin E (AE) in the presence of ß-glucuronidase and provide ADCs that were highly stable in plasma. Anti-CD30 conjugates comprised of the glucuronide-AE linker were potent and immunologically specific in vitro and in vivo, displaying pharmacologic properties comparable with a carbamate-linked glucuronide-monomethylauristatin E control. The quaternary ammonium linker was then applied to a tubulysin antimitotic drug that contained an N-terminal tertiary amine that was important for activity. A glucuronide-tubulysin quaternary ammonium linker was synthesized and evaluated as an ADC payload, in which the resulting conjugates were found to be potent and immunologically specific in vitro, and displayed a high level of activity in a Hodgkin lymphoma xenograft. Furthermore, the results were superior to those obtained with a related tubulysin derivative containing a secondary amine N-terminus for conjugation using previously known linker technology. The quaternary ammonium linker represents a significant advance in linker technology, enabling stable conjugation of payloads with tertiary amine residues. Mol Cancer Ther; 15(5); 938-45. ©2016 AACR.


Assuntos
Compostos de Amônio/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Imunoconjugados/química , Imunoconjugados/farmacologia , Animais , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Imunoconjugados/farmacocinética , Cinética , Camundongos , Estrutura Molecular , Ligação Proteica , Ratos , Tubulina (Proteína) , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Curr Opin Struct Biol ; 23(4): 499-506, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23773802

RESUMO

The phospholipid bilayer has evolved to be a protective and selective barrier by which the cell maintains high concentrations of life sustaining organic and inorganic material. As gatekeepers responsible for an immense amount of bidirectional chemical traffic between the cytoplasm and extracellular milieu, ion channels have been studied in detail since their postulated existence nearly three-quarters of a century ago. Over the past fifteen years, we have begun to understand how selective permeability can be achieved for both cationic and anionic ions. Our mechanistic knowledge has expanded recently with studies of a large family of anion channels, the Formate Nitrite Transport (FNT) family. This family has proven amenable to structural studies at a resolution high enough to reveal intimate details of ion selectivity and gating. With five representative members having yielded a total of 15 crystal structures, this family represents one of the richest sources of structural information for anion channels.


Assuntos
Canais de Ânion Dependentes de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/ultraestrutura , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico , Cristalografia por Raios X , Formiatos/metabolismo , Ativação do Canal Iônico , Bombas de Íon/metabolismo , Fosfolipídeos/metabolismo , Conformação Proteica
15.
Nature ; 499(7456): 107-10, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23685453

RESUMO

Eukaryotic Ca(2+) regulation involves sequestration into intracellular organelles, and expeditious Ca(2+) release into the cytosol is a hallmark of key signalling transduction pathways. Bulk removal of Ca(2+) after such signalling events is accomplished by members of the Ca(2+):cation (CaCA) superfamily. The CaCA superfamily includes the Na(+)/Ca(2+) (NCX) and Ca(2+)/H(+) (CAX) antiporters, and in mammals the NCX and related proteins constitute families SLC8 and SLC24, and are responsible for the re-establishment of Ca(2+) resting potential in muscle cells, neuronal signalling and Ca(2+) reabsorption in the kidney. The CAX family members maintain cytosolic Ca(2+) homeostasis in plants and fungi during steep rises in intracellular Ca(2+) due to environmental changes, or following signal transduction caused by events such as hyperosmotic shock, hormone response and response to mating pheromones. The cytosol-facing conformations within the CaCA superfamily are unknown, and the transport mechanism remains speculative. Here we determine a crystal structure of the Saccharomyces cerevisiae vacuolar Ca(2+)/H(+) exchanger (Vcx1) at 2.3 Å resolution in a cytosol-facing, substrate-bound conformation. Vcx1 is the first structure, to our knowledge, within the CAX family, and it describes the key cytosol-facing conformation of the CaCA superfamily, providing the structural basis for a novel alternating access mechanism by which the CaCA superfamily performs high-throughput Ca(2+) transport across membranes.


Assuntos
Antiporters/química , Antiporters/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Prótons , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Transporte de Íons , Mathanococcus/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade
16.
Nature ; 496(7446): 533-6, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23542591

RESUMO

Phosphate is crucial for structural and metabolic needs, including nucleotide and lipid synthesis, signalling and chemical energy storage. Proton-coupled transporters of the major facilitator superfamily (MFS) are essential for phosphate uptake in plants and fungi, and also have a function in sensing external phosphate levels as transceptors. Here we report the 2.9 Å structure of a fungal (Piriformospora indica) high-affinity phosphate transporter, PiPT, in an inward-facing occluded state, with bound phosphate visible in the membrane-buried binding site. The structure indicates both proton and phosphate exit pathways and suggests a modified asymmetrical 'rocker-switch' mechanism of phosphate transport. PiPT is related to several human transporter families, most notably the organic cation and anion transporters of the solute carrier family (SLC22), which are implicated in cancer-drug resistance. We modelled representative cation and anion SLC22 transporters based on the PiPT structure to surmise the structural basis for substrate binding and charge selectivity in this important family. The PiPT structure demonstrates and expands on principles of substrate transport by the MFS transporters and illuminates principles of phosphate uptake in particular.


Assuntos
Basidiomycota/química , Células Eucarióticas/química , Proteínas de Transporte de Fosfato/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Biológicos , Modelos Moleculares , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Conformação Proteica , Prótons , Relação Estrutura-Atividade
17.
Nat Struct Mol Biol ; 17(1): 31-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20010838

RESUMO

Formate transport across the inner membrane is a critical step in anaerobic bacterial respiration. Members of the formate/nitrite transport protein family function to shuttle substrate across the cytoplasmic membrane. In bacterial pathogens, the nitrite transport protein is involved in protecting bacteria from peroxynitrite released by host macrophages. We have determined the 2.13-A structure of the formate channel FocA from Vibrio cholerae, which reveals a pentamer in which each monomer possesses its own substrate translocation pore. Unexpectedly, the fold of the FocA monomer resembles that found in water and glycerol channels. The selectivity filter in FocA consists of a cytoplasmic slit and a central constriction ring. A 2.5-A high-formate structure shows two formate ions bound to the cytoplasmic slit via both hydrogen bonding and van der Waals interactions, providing a structural basis for the substrate selectivity of the channel.


Assuntos
Formiatos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Vibrio cholerae/química , Cristalização , Especificidade por Substrato , Vibrio cholerae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA