Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Anaesth Intensive Care ; 52(2): 105-112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38006606

RESUMO

Severely ill patients with COVID-19 are challenging to sedate and often require high-dose sedation and analgesic regimens. Ketamine can be an effective adjunct to facilitate sedation of critically ill patients but its effects on sedation level and inflammation in COVID-19 patients have not been studied. This retrospective, observational cohort study evaluated the effect of ketamine infusions on inflammatory biomarkers and clinical outcomes in mechanically ventilated patients with SARS-CoV-2 infection. A total of 186 patients were identified (47 received ketamine, 139 did not). Patients who received ketamine were significantly younger than those who did not (mean (standard deviation) 59.2 (14.2) years versus 66.3 (14.4) years; P = 0.004), but there was no statistically significant difference in body mass index (P = 0.25) or sex distribution (P = 0.91) between groups. Mechanically ventilated patients who received ketamine infusions had a statistically significant reduction in Richmond Agitation-Sedation Scale score (-3.0 versus -2.0, P < 0.001). Regarding inflammatory biomarkers, ketamine was associated with a reduction in ferritin (P = 0.02) and lactate (P = 0.01), but no such association was observed for C-reactive protein (P = 0.27), lactate dehydrogenase (P = 0.64) or interleukin-6 (P = 0.87). No significant association was observed between ketamine administration and mortality (odds ratio 0.971; 95% confidence interval 0.501 to 1.882; P = 0.93). Ketamine infusion was associated with improved sedation depth in mechanically ventilated COVID-19 patients and provided a modest anti-inflammatory benefit but did not confer benefit with respect to mortality or intensive care unit length of stay.


Assuntos
COVID-19 , Ketamina , Humanos , Ketamina/uso terapêutico , SARS-CoV-2 , Estudos Retrospectivos , Respiração Artificial , Infusões Intravenosas , COVID-19/etiologia , Unidades de Terapia Intensiva , Estado Terminal , Inflamação/tratamento farmacológico , Inflamação/etiologia , Biomarcadores , Hipnóticos e Sedativos/uso terapêutico
2.
Sci Rep ; 12(1): 3618, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256673

RESUMO

Metabolic reprogramming contributes to oncogenesis, tumor growth, and treatment resistance in pancreatic ductal adenocarcinoma (PDAC). Here we report the effects of (R,S')-4'-methoxy-1-naphthylfenoterol (MNF), a GPR55 antagonist and biased ß2-adrenergic receptor (ß2-AR) agonist on cellular signaling implicated in proliferation and metabolism in PDAC cells. The relative contribution of GPR55 and ß2-AR in (R,S')-MNF signaling was explored further in PANC-1 cells. Moreover, the effect of (R,S')-MNF on tumor growth was determined in a PANC-1 mouse xenograft model. PANC-1 cells treated with (R,S')-MNF showed marked attenuation in GPR55 signal transduction and function combined with increased ß2-AR/Gαs/adenylyl cyclase/PKA signaling, both of which contributing to lower MEK/ERK, PI3K/AKT and YAP/TAZ signaling. (R,S')-MNF administration significantly reduced PANC-1 tumor growth and circulating L-lactate concentrations. Global metabolic profiling of (R,S')-MNF-treated tumor tissues revealed decreased glycolytic metabolism, with a shift towards normoxic processes, attenuated glutamate metabolism, and increased levels of ophthalmic acid and its precursor, 2-aminobutyric acid, indicative of elevated oxidative stress. Transcriptomics and immunoblot analyses indicated the downregulation of gene and protein expression of HIF-1α and c-Myc, key initiators of metabolic reprogramming in PDAC. (R,S')-MNF treatment decreased HIF-1α and c-Myc expression, attenuated glycolysis, shifted fatty acid metabolism towards ß-oxidation, and suppressed de novo pyrimidine biosynthesis in PANC-1 tumors. The results indicate a potential benefit of combined GPR55 antagonism and biased ß2-AR agonism in PDAC therapy associated with the deprogramming of altered cellular metabolism.


Assuntos
Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinases , Agonistas Adrenérgicos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Fenoterol/farmacologia , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais
4.
Curr Pain Headache Rep ; 25(9): 57, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34269883

RESUMO

PURPOSE OF REVIEW: While ketamine's analgesia has mostly been attributed to antagonism of N-methyl-D-aspartate receptors, evidence suggests multiple other pathways are involved in its antidepressant and possibly analgesic activity. These mechanisms and ketamine's role in the nociplastic pain paradigm are discussed. Animal studies demonstrating ketamine's neurotoxicity have unclear human translatability and findings from key rodent and human studies are presented. RECENT FINDINGS: Ketamine's metabolites, and (2R,6R)-hydroxynorketamine in particular, may play a greater role in its clinical activity than previously believed. The activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and the mammalian target of rapamycin by ketamine are mechanisms that are still being elucidated. Ketamine might work best in nociplastic pain, which involves altered pain processing. While much is known about ketamine, new studies will continue to define its role in clinical medicine. Evidence supporting ketamine's neurotoxicity in humans is lacking and should not impede future ketamine clinical trials.


Assuntos
Ketamina , Animais , Previsões , Humanos , Ketamina/metabolismo , Ketamina/farmacologia , Ketamina/toxicidade , Dor/tratamento farmacológico
5.
J Clin Pharmacol ; 61(11): 1421-1429, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34125442

RESUMO

Patients with refractory chronic migraine have substantial disability and have failed many acute and preventive medications. When aggressive intravenous therapy is indicated, both lidocaine and (R,S)-ketamine infusions have been used successfully to provide relief. Retrospective studies have shown that both agents may be associated with short-term analgesia. In this prospective, observational pilot study of 6 patients, we compared the effects of lidocaine and (R,S)-ketamine infusions and performed metabolite analyses of (R,S)-ketamine to determine its metabolic profile in this population. One of (R,S)-ketamine's metabolites, (2R,6R)-hydroxynorketamine, has been shown in animal studies to reduce pain, but human studies in patients undergoing continuous (R,S)-ketamine infusions for migraine are lacking. All 6 patients tolerated both infusions well with mild adverse effects. The baseline mean pain rating (0-10 numeric rating scale) decreased from 7.5 ± 2.2 to 4.7 ± 2.8 by end of lidocaine treatment ( P≤.05 ) but increased to 7.0 ± 1.4 by the postdischarge visit at 4 weeks (P > .05 vs baseline). The baseline mean pain rating prior to ketamine treatment was 7.4 ± 1.4, which decreased to 3.7 ± 2.3 by the end of the hospitalization ( P≤.05 ) but increased to 7.2 ± 1.7 by the postdischarge visit at 6 weeks (P > .05 vs baseline). For the primary outcome the change in pain from baseline to end of treatment was greater for ketamine than lidocaine (-3.7 vs -2.8; P≤.05 ), but this has minimal clinical significance. Ketamine metabolite analysis revealed that (2R,6R)-hydroxynorketamine was the predominant metabolite during most of the infusion, consistent with previous studies.


Assuntos
Analgésicos/uso terapêutico , Ketamina/uso terapêutico , Lidocaína/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Adulto , Analgésicos/administração & dosagem , Analgésicos/efeitos adversos , Doença Crônica , Feminino , Humanos , Ketamina/administração & dosagem , Ketamina/efeitos adversos , Ketamina/análogos & derivados , Ketamina/sangue , Ketamina/farmacocinética , Lidocaína/administração & dosagem , Lidocaína/efeitos adversos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Adulto Jovem
7.
Circ Res ; 128(2): 262-277, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33208036

RESUMO

RATIONALE: The ß2-adrenoceptor (ß2-AR), a prototypical GPCR (G protein-coupled receptor), couples to both Gs and Gi proteins. Stimulation of the ß2-AR is beneficial to humans and animals with heart failure presumably because it activates the downstream Gi-PI3K-Akt cell survival pathway. Cardiac ß2-AR signaling can be regulated by crosstalk or heterodimerization with other GPCRs, but the physiological and pathophysiological significance of this type of regulation has not been sufficiently demonstrated. OBJECTIVE: Here, we aim to investigate the potential cardioprotective effect of ß2-adrenergic stimulation with a subtype-selective agonist, (R,R')-4-methoxy-1-naphthylfenoterol (MNF), and to decipher the underlying mechanism with a particular emphasis on the role of heterodimerization of ß2-ARs with another GPCR, 5-hydroxytryptamine receptors 2B (5-HT2BRs). METHODS AND RESULTS: Using pharmacological, genetic and biophysical protein-protein interaction approaches, we studied the cardioprotective effect of the ß2-agonist, MNF, and explored the underlying mechanism in both in vivo in mice and cultured rodent cardiomyocytes insulted with doxorubicin, hydrogen peroxide (H2O2) or ischemia/reperfusion. In doxorubicin (Dox)-treated mice, MNF reduced mortality and body weight loss, while improving cardiac function and cardiomyocyte viability. MNF also alleviated myocardial ischemia/reperfusion injury. In cultured rodent cardiomyocytes, MNF inhibited DNA damage and cell death caused by Dox, H2O2 or hypoxia/reoxygenation. Mechanistically, we found that MNF or another ß2-agonist zinterol markedly promoted heterodimerization of ß2-ARs with 5-HT2BRs. Upregulation of the heterodimerized 5-HT2BRs and ß2-ARs enhanced ß2-AR-stimulated Gi-Akt signaling and cardioprotection while knockdown or pharmacological inhibition of the 5-HT2BR attenuated ß2-AR-stimulated Gi signaling and cardioprotection. CONCLUSIONS: These data demonstrate that the ß2-AR-stimulated cardioprotective Gi signaling depends on the heterodimerization of ß2-ARs and 5-HT2BRs.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Cardiomiopatias/prevenção & controle , Fenoterol/análogos & derivados , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Receptor 5-HT2B de Serotonina/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Animais , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiotoxicidade , Morte Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Doxorrubicina , Etanolaminas/farmacologia , Fenoterol/farmacologia , Fibrose , Peróxido de Hidrogênio , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Multimerização Proteica , Ratos Sprague-Dawley , Receptor 5-HT2B de Serotonina/genética , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais
8.
Sci Rep ; 10(1): 20490, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235276

RESUMO

Huntington's Disease (HD) is a progressive, fatal neurodegenerative condition. While generally considered for its devastating neurological phenotype, disturbances in other organ systems and metabolic pathways outside the brain have attracted attention for possible relevance to HD pathology, potential as therapeutic targets, or use as biomarkers of progression. In addition, it is not established how metabolic changes in the HD brain correlate to progression across the full spectrum of early to late-stage disease. In this pilot study, we sought to explore the metabolic profile across manifest HD from early to advanced clinical staging through metabolomic analysis by mass spectrometry in plasma and cerebrospinal fluid (CSF). With disease progression, we observed nominally significant increases in plasma arginine, citrulline, and glycine, with decreases in total and D-serine, cholesterol esters, diacylglycerides, triacylglycerides, phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins. In CSF, worsening disease was associated with nominally significant increases in NAD+, arginine, saturated long chain free fatty acids, diacylglycerides, triacylglycerides, and sphingomyelins. Notably, diacylglycerides and triacylglyceride species associated with clinical progression were different between plasma and CSF, suggesting different metabolic preferences for these compartments. Increasing NAD+ levels strongly correlating with disease progression was an unexpected finding. Our data suggest that defects in the urea cycle, glycine, and serine metabolism may be underrecognized in the progression HD pathology, and merit further study for possible therapeutic relevance.


Assuntos
Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Avaliação da Deficiência , Doença de Huntington/sangue , Doença de Huntington/líquido cefalorraquidiano , Metabolômica , Adulto , Arginina/sangue , Arginina/líquido cefalorraquidiano , Creatina/sangue , Creatina/líquido cefalorraquidiano , Estudos Transversais , Feminino , Glicina/sangue , Glicina/líquido cefalorraquidiano , Humanos , Doença de Huntington/metabolismo , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Resultado do Tratamento , Adulto Jovem
9.
Acta Pharmacol Sin ; 40(8): 1095-1105, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30643208

RESUMO

ß-Arrestins are a small family of proteins important for signal transduction at G protein-coupled receptors (GPCRs). ß-Arrestins are involved in the desensitization of GPCRs. Recently, biased ligands possessing different efficacies in activating the G protein- versus the ß-arrestin-dependent signals downstream of a single GPCR have emerged, which can be used to selectively modulate GPCR signal transduction in such a way that desirable signals are enhanced to produce therapeutic effects while undesirable signals of the same GPCR are suppressed to avoid side effects. In the present study, we evaluated agonist bias for compounds developed along a drug discovery project of ß2-adrenoceptor agonists. About 150 compounds, including derivatives of fenoterol, 2-amino-1-phenylethanol and 2-amino-2-phenylethanol, were obtained or synthesized, and initially screened for their ß-adrenoceptor-mediated activities in the guinea pig tracheal smooth muscle relaxation assay or the cardiomyocyte contractility assay. Nineteen bioactive compounds were further assessed using both the HTRF cAMP assay and the PathHunter ß-arrestin assay. Their concentration-response data in stimulating cAMP synthesis and ß-arrestin recruitment were applied to the Black-Leff operational model for ligand bias quantitation. As a result, three compounds (L-2, L-4, and L-12) with the core structure of 5-(1-amino-2-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one were identified as a new series of ß-arrestin-biased ß2-adrenoceptor agonists, whereas salmeterol was found to be Gs-biased. These findings would facilitate the development of novel drugs for the treatment of both heart failure and asthma.


Assuntos
Agonistas Adrenérgicos beta/uso terapêutico , Etanolaminas/uso terapêutico , beta-Arrestinas/metabolismo , Agonistas Adrenérgicos beta/síntese química , Animais , Broncodilatadores/síntese química , Broncodilatadores/uso terapêutico , Células CHO , Cricetulus , Descoberta de Drogas , Etanolaminas/síntese química , Cobaias , Células HEK293 , Humanos , Ligantes , Masculino , Traqueia/efeitos dos fármacos
10.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 831-839, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29563072

RESUMO

Post-traumatic stress disorder (PTSD) is a chronic and debilitating condition that is often refractory to standard frontline antidepressant therapy. A promising new approach to PTSD therapy is administration of a single sub-anesthetic dose of (R,S)-ketamine (Ket). The treatment produces rapid and significant therapeutic response, which lasts for only 4-7 days. In one of our studies, the mean duration of response was increased to 33 days when Ket administration was combined with a mindfulness-based cognitive therapy, Trauma Interventions using Mindfulness Based Extinction and Reconsolidation (TIMBER). We now report the results from a 20-patient study, which examined the duration of sustained response with combined TIMBER-Ket therapy, TIMBER-K arm, relative to the response observed in a placebo-controlled arm, TIMBER-P. A significant difference in the duration of response was observed between TIMBER-K and TIMBER-P arms: 34.44 ±â€¯19.12 days and 16.50 ±â€¯11.39 days, respectively (p = 0.022). Previous studies identified a negative correlation between antidepressant response to Ket and basal plasma concentrations of d-serine (DSR). In this study, the basal DSR levels positively correlated with the pre-treatment severity of PTSD symptoms (Pearson's r = 0.42, p = 0.07) and patients with basal DSR level ≥ 3.5 µM displayed not only higher PTSD severity but also shorter duration of response. The data indicate that basal DSR levels may serve as a biomarker of the severity of PTSD symptoms and as a predictor of clinical response. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca.


Assuntos
Ketamina/uso terapêutico , Atenção Plena , Serina/sangue , Transtornos de Estresse Pós-Traumáticos/terapia , Adulto , Biomarcadores/sangue , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Transtornos de Estresse Pós-Traumáticos/sangue
11.
Biochim Biophys Acta Gen Subj ; 1862(6): 1505-1515, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29526507

RESUMO

BACKGROUND: Impairment in mitochondrial biogenesis and function plays a key role in depression and anxiety, both of which being associated with changes in fatty acid and phospholipid metabolism. The antidepressant effects of (R,S)-ketamine have been linked to its conversion into (2S,6S;2R,6R)-hydroxynorketamine (HNK); however, the connection between structure and stereochemistry of ketamine and HNK in the mitochondrial homeostatic response has not yet been fully elucidated at a metabolic level. METHODS: We used a multi-platform, non-targeted metabolomics approach to study the change in mitochondrial metabolome of PC-12 cells treated with ketamine and HNK enantiomers. The identified metabolites were grouped into pathways in order to assess global responses. RESULTS: Treatment with (2R,6R)-HNK elicited the significant change in 49 metabolites and associated pathways implicated in fundamental mitochondrial functions such as TCA cycle, branched-chain amino acid biosynthetic pathway, glycoxylate metabolic pathway, and fatty acid ß-oxidation. The affected metabolites included glycerate, citrate, leucine, N,N-dimethylglycine, 3-hexenedioic acid, and carnitine and attenuated signals associated with 9 fatty acids and elaidic acid. Important metabolites involved in the purine and pyrimidine pathways were also affected by (2R-6R)-HNK. This global metabolic profile was not as strongly impacted by treatment with (2S,6S)-HNK, (R)- and (S)-ketamine and in some instances opposite effects were observed. CONCLUSIONS: The present data provide an overall view of the metabolic changes in mitochondrial function produced by (2R,6R)-HNK and related ketamine compounds and offer an insight into the source of the observed variance in antidepressant response elicited by the compounds.


Assuntos
Ketamina/análogos & derivados , Ketamina/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma , Metabolômica/métodos , Mitocôndrias/metabolismo , Animais , Mitocôndrias/efeitos dos fármacos , Células PC12 , Ratos , Estereoisomerismo
12.
Int J Cancer ; 141(10): 2131-2142, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28741686

RESUMO

The Warburg effect is a predominant metabolic pathway in cancer cells characterized by enhanced glucose uptake and its conversion to l-lactate and is associated with upregulated expression of HIF-1α and activation of the EGFR-MEK-ERK, Wnt-ß-catenin, and PI3K-AKT signaling pathways. (R,R')-4'-methoxy-1-naphthylfenoterol ((R,R')-MNF) significantly reduces proliferation, survival, and motility of PANC-1 pancreatic cancer cells through inhibition of the GPR55 receptor. We examined (R,R')-MNF's effect on glycolysis in PANC-1 cells and tumors. Global NMR metabolomics was used to elucidate differences in the metabolome between untreated and (R,R')-MNF-treated cells. LC/MS analysis was used to quantify intracellular concentrations of ß-hydroxybutyrate, carnitine, and l-lactate. Changes in target protein expression were determined by Western blot analysis. Data was also obtained from mouse PANC-1 tumor xenografts after administration of (R,R')-MNF. Metabolomics data indicate that (R,R')-MNF altered fatty acid metabolism, energy metabolism, and amino acid metabolism and increased intracellular concentrations of ß-hydroxybutyrate and carnitine while reducing l-lactate content. The cellular content of phosphoinositide-dependent kinase-1 and hexokinase 2 was reduced consistent with diminished PI3K-AKT signaling and glucose metabolism. The presence of the GLUT8 transporter was established and found to be attenuated by (R,R')-MNF. Mice treated with (R,R')-MNF had significant accumulation of l-lactate in tumor tissue relative to vehicle-treated mice, together with reduced levels of the selective l-lactate transporter MCT4. Lower intratumoral levels of EGFR, pyruvate kinase M2, ß-catenin, hexokinase 2, and p-glycoprotein were also observed. The data suggest that (R,R')-MNF reduces glycolysis in PANC-1 cells and tumors through reduced expression and function at multiple controlling sites in the glycolytic pathway.


Assuntos
Fenoterol/análogos & derivados , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Receptores de Canabinoides/química , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Fenoterol/farmacologia , Humanos , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores de Canabinoides/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cell Signal ; 36: 176-188, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28495590

RESUMO

Activation of ß2-adrenergic receptor (ß2AR) and deorphanized GPR55 has been shown to modulate cancer growth in diverse tumor types in vitro and in xenograft models in vivo. (R,R')-4'-methoxy-1-naphthylfenoterol [(R,R')-MNF] is a bivalent compound that agonizes ß2AR but inhibits GPR55-mediated pro-oncogenic responses. Here, we investigated the molecular mechanisms underlying the anti-tumorigenic effects of concurrent ß2AR activation and GPR55 blockade in C6 glioma cells using (R,R')-MNF as a marker ligand. Our data show that (R,R')-MNF elicited G1-phase cell cycle arrest and apoptosis, reduced serum-inducible cell motility, promoted the phosphorylation of PKA target proteins, and inhibited constitutive activation of ERK and AKT in the low nanomolar range, whereas high nanomolar levels of (R,R')-MNF were required to block GPR55-mediated cell motility. siRNA knockdown and pharmacological inhibition of ß2AR activity were accompanied by significant upregulation of AKT and ERK phosphorylation, and selective alteration in (R,R')-MNF responsiveness. The effects of agonist stimulation of GPR55 on various readouts, including cell motility assays, were suppressed by (R,R')-MNF. Lastly, a significant increase in phosphorylation-mediated inactivation of ß-catenin occurred with (R,R')-MNF, and we provided new evidence of (R,R')-MNF-mediated inhibition of oncogenic ß-catenin signaling in a C6 xenograft tumor model. Thus, simultaneous activation of ß2AR and blockade of GPR55 may represent a novel therapeutic approach to combat the progression of glioblastoma cancer.


Assuntos
Neoplasias Encefálicas/metabolismo , Carcinogênese/metabolismo , Glioma/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fenoterol/análogos & derivados , Fenoterol/farmacologia , Glioma/patologia , Humanos , Isoproterenol/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Soro , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Pharmacol Res ; 111: 757-766, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27423937

RESUMO

G protein-coupled receptor 55 (GPR55) possesses pro-oncogenic activity and its function can be competitively inhibited with (R,R')-4'-methoxy-1-naphthylfenoterol (MNF) through poorly defined signaling pathways. Here, the anti-tumorigenic effect of MNF was investigated in the human pancreatic cancer cell line, PANC-1, by focusing on the expression of known cancer biomarkers and the expression and function of multidrug resistance (MDR) exporters such as P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP). Incubation of PANC1 cells with MNF (1µM) for 24h significantly decreased EGF receptor, pyruvate kinase M2 (PKM2), and ß-catenin protein levels and was accompanied by significant reduction in nuclear accumulation of HIF-1α and the phospho-active forms of PKM2 and ß-catenin. Inhibition of GPR55 with either MNF or the GPR55 antagonist CID 16020046 lowered the amount of MDR proteins in total cellular extracts while diminishing the nuclear expression of Pgp and BCRP. There was significant nuclear accumulation of doxorubicin in PANC-1 cells treated with MNF and the pre-incubation with MNF increased the cytotoxicity of doxorubicin and gemcitabine in these cells. Potentiation of doxorubicin cytotoxicity by MNF was also observed in MDA-MB-231 breast cancer cells and U87MG glioblastoma cells, which express high levels of GPR55. The data suggest that inhibition of GPR55 activity produces antitumor effects via attenuation of the MEK/ERK and PI3K-AKT pathways leading to a reduction in the expression and function of MDR proteins.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fenoterol/análogos & derivados , Neoplasias Pancreáticas/tratamento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antibióticos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Doxorrubicina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fenoterol/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Proteínas de Membrana/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Canabinoides , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , beta Catenina/metabolismo , Gencitabina , Proteínas de Ligação a Hormônio da Tireoide
16.
J Pharmacol Exp Ther ; 359(1): 159-70, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27469513

RESUMO

Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine's antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine's side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1-D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine's enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 µM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect.


Assuntos
Dopamina/metabolismo , Ketamina/metabolismo , Ketamina/farmacologia , Neostriado/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Receptores Dopaminérgicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Ketamina/sangue , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/metabolismo
17.
Nature ; 533(7604): 481-6, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27144355

RESUMO

Major depressive disorder affects around 16 per cent of the world population at some point in their lives. Despite the availability of numerous monoaminergic-based antidepressants, most patients require several weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive, glutamatergic NMDAR (N-methyl-d-aspartate receptor) antagonist (R,S)-ketamine exerts rapid and sustained antidepressant effects after a single dose in patients with depression, but its use is associated with undesirable side effects. Here we show that the metabolism of (R,S)-ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant-related actions in mice. These antidepressant actions are independent of NMDAR inhibition but involve early and sustained activation of AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors). We also establish that (2R,6R)-HNK lacks ketamine-related side effects. Our data implicate a novel mechanism underlying the antidepressant properties of (R,S)-ketamine and have relevance for the development of next-generation, rapid-acting antidepressants.


Assuntos
Antidepressivos/metabolismo , Antidepressivos/farmacologia , Ketamina/análogos & derivados , Ketamina/metabolismo , Animais , Antidepressivos/efeitos adversos , Feminino , Ketamina/efeitos adversos , Ketamina/farmacologia , Masculino , Camundongos , Receptores de AMPA/agonistas , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Fatores de Tempo
18.
PLoS One ; 11(4): e0149499, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27096720

RESUMO

D-Serine is an endogenous NMDA receptor co-agonist that activates synaptic NMDA receptors modulating neuronal networks in the cerebral cortex and plays a key role in long-term potentiation of synaptic transmission. D-serine is associated with NMDA receptor neurotoxicity and neurodegeneration and elevated D-serine concentrations have been associated with Alzheimer's and Parkinsons' diseases and amyotrophic lateral sclerosis. Previous studies have demonstrated that the ketamine metabolites (rac)-dehydronorketamine and (2S,6S)-hydroxynorketamine decrease intracellular D-serine concentrations in a concentration dependent manner in PC-12 cells. In the current study, PC-12 cells were incubated with a series of ketamine metabolites and the IC50 values associated with attenuated intracellular D-serine concentrations were determined. The results demonstrate that structural and stereochemical features of the studied compounds contribute to the magnitude of the inhibitory effect with (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine displaying the most potent inhibition with IC50 values of 0.18 ± 0.04 nM and 0.68 ± 0.09 nM. The data was utilized to construct a preliminary 3D-QSAR/pharmacophore model for use in the design of new and more efficient modulators of D-serine.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Ketamina/análogos & derivados , Ketamina/farmacologia , Serina/metabolismo , Animais , Western Blotting , Antígenos de Histocompatibilidade Menor , Modelos Moleculares , Células PC12 , Transporte Proteico , Ratos , Estereoisomerismo
19.
J Pharmacol Exp Ther ; 355(2): 183-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26306764

RESUMO

UNLABELLED: Beyond canonical signaling via Gαs and cAMP, the concept of functional selectivity at ß2-adrenoceptors (ß2ARs) describes the ability of adrenergic drugs to stabilize ligand-specific receptor conformations to initiate further signaling cascades comprising additional G-protein classes or ß-arrestins (ßarr). A set of 65 adrenergic ligands including 40 agonists and 25 antagonists in either racemic or enantiopure forms was used for ßarr recruitment experiments based on a split-luciferase assay in a cellular system expressing ß2AR. Many agonists showed only (weak) partial agonism regarding ßarr recruitment. Potencies and/or efficacies increased depending on the number of chirality centers in (R) configuration; no (S)-configured distomer was more effective at inducing ßarr recruitment other than the eutomer. ßarr2 was recruited more effectively than ßarr1. The analysis of antagonists revealed no significant effects on ßarr recruitment. Several agonists showed preference for activation of Gαs GTPase relative to ßarr recruitment, and no ßarr-biased ligand was identified. IN CONCLUSION: 1) agonists show strong bias for Gαs activation relative to ßarr recruitment; 2) agonists recruit ßarr1 and ßarr2 with subtle differences; and 3) there is no evidence for ßarr recruitment by antagonists.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Arrestinas/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/química , Antagonistas de Receptores Adrenérgicos beta 2/química , Catecolaminas/metabolismo , Agonismo Parcial de Drogas , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Isoproterenol/farmacologia , Ligantes , Estereoisomerismo , Relação Estrutura-Atividade , beta-Arrestina 1 , beta-Arrestinas
20.
Br J Pharmacol ; 172(18): 4546-4559, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26140427

RESUMO

BACKGROUND AND PURPOSE: Patients with major depressive disorder receiving racemic ketamine, (R,S)-ketamine, experience transient increases in Clinician-Administered Dissociative States Scale scores and a coincident drop in plasma d-serine levels. The results suggest that (R,S)-ketamine produces an immediate, concentration-dependent pharmacological effect on d-serine plasma concentrations. One potential source of this effect is (R,S)-ketamine-induced inhibition of the transporter ASCT2, which regulates intracellular d-serine concentrations. In this study, we tested this hypothesis by examining the effect of (S)- and (R)-ketamine on ASCT2-mediated transport of d-serine in PC-12 and 1321N1 cells and primary neuronal cells in culture. EXPERIMENTAL APPROACH: Intracellular and extracellular d-serine levels were determined using capillary electrophoresis-laser-induced fluorescence and liquid chromatography-mass spectrometry respectively. Expression of ASCT2, Asc-1 and serine racemase was determined utilizing Western blotting. KEY RESULTS: (S)-Ketamine produced a concentration-dependent increase in intracellular d-serine and reduced extracellular d-serine accumulation. In contrast, (R)-ketamine decreased both intracellular and extracellular d-serine levels. The ASCT2 inhibitor, benzyl-d-serine (BDS), and ASCT2 gene knockdown mimicked the action of (S)-ketamine on d-serine in PC-12 cells, while the Asc-1 agonist d-isoleucine reduced intracellular d-serine and increased extracellular d-serine accumulation. This response to d-isoleucine was not affected by BDS or (S)-ketamine. Primary cultures of rat neuronal cells expressed ASCT2 and were responsive to (S)-ketamine and BDS. (S)- and (R)-ketamine increased the expression of monomeric serine racemase in all the cells studied, with (S)-ketamine having the greatest effect. CONCLUSIONS AND IMPLICATIONS: (S)-Ketamine decreased cellular export of d-serine via selective inhibition of ASCT2, and this could represent a possible source of dissociative effects observed with (R,S)-ketamine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA