Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(19): 13784-13791, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37159272

RESUMO

We present a study on molecular-frame photoelectron angular distributions (MFPADs) of small molecules using circularly polarized synchrotron light. We find that the main forward-scattering peaks of the MFPADs are slightly tilted with respect to the molecular axis. This tilt angle is directly connected to the molecular bond length by a simple, universal formula. We apply the derived formula to several examples of MFPADs of C 1s and O 1s photoelectrons of CO, which have been measured experimentally or obtained by means of ab initio modeling. In addition, we discuss the influence of the back-scattering contribution that is superimposed over the analyzed forward-scattering peak in the case of homo-nuclear diatomic molecules such as N2.

2.
Phys Rev Lett ; 128(5): 053001, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179929

RESUMO

We present the momentum distributions of the nucleus and of the electrons from double ionization of the helium atom by Compton scattering of photons with hν=40 keV. We find that the doubly charged ion momentum distribution is very close to the Compton profile of the nucleus in the ground state of the helium atom, and the momentum distribution of the singly charged ion to give a precise image of the electron Compton profile. To reproduce these results, nonrelativistic calculations require the use of highly correlated initial- and final-state wave functions.

3.
Phys Rev Lett ; 123(19): 193001, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31765203

RESUMO

We investigate K-shell ionization of N_{2} at 40 keV photon energy. Using a cold target recoil ion momentum spectroscopy reaction microscope, we determine the vector momenta of the photoelectron, the Auger electron, and both N^{+} fragments. These fully differential data show that the dissociation process of the N_{2}^{2+} ion is significantly modified not only by the recoil momentum of the photoelectron but also by the photon momentum and the momentum of the emitted Auger electron. We find that the recoil energy introduced by the photon and the photoelectron momentum is partitioned with a ratio of approximately 30∶70 between the Auger electron and fragment ion kinetic energies, respectively. We also observe that the photon momentum induces an additional rotation of the molecular ion.

4.
Phys Rev Lett ; 123(24): 243201, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922823

RESUMO

We investigate angular emission distributions of the 1s photoelectrons of N_{2} ionized by linearly polarized synchrotron radiation at hν=40 keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured emission distributions. In addition, we observe an unexpected asymmetry with respect to the polarization direction, which depends on the direction of the molecular fragmentation. In particular, photoelectrons are predominantly emitted in the direction of the forward nitrogen atom. This observation cannot be explained via asymmetries introduced by the initial bound and final continuum electronic states of the oriented molecule. The present simulations assign this asymmetry to a novel nontrivial effect of the recoil imposed to the nuclei by the fast photoelectrons and high-energy photons, which results in a propensity for the ions to break up along the axis of the recoil momentum. The results are of particular importance for the interpretation of future experiments at x-ray free electron lasers operating in the few tens of keV regime, where such nondipole and recoil effects will be essential.

5.
Phys Rev Lett ; 121(8): 083002, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192586

RESUMO

We report on a direct method to measure the interatomic potential energy curve of diatomic systems. A cold target recoil ion momentum spectroscopy reaction microscope was used to measure the squares of the vibrational wave functions of H_{2}, He_{2}, Ne_{2}, and Ar_{2}. The Schrödinger equation relates the curvature of the wave function to the potential V(R) and therefore offers a simple but elegant way to extract the shape of the potential.

6.
Nat Commun ; 9(1): 2259, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872047

RESUMO

The original version of this Article contained an error in the fifth sentence of the first paragraph of the 'Application on H2' section of the Results, which incorrectly read 'The role of electron correlation is quite apparent in this presentation: Fig. 1a is empty for the uncorrelated Hartree-Fock wave function, since projection of the latter wave function onto the 2pσu orbital is exactly zero, while this is not the case for the fully correlated wave function (Fig. 1d); also, Fig. 1b, c for the uncorrelated description are identical, while Fig. 1e, f for the correlated case are significantly different.' The correct version replaces 'Fig. 1e, f' with 'Fig. 2e and f'.

7.
Phys Rev Lett ; 121(24): 243002, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608769

RESUMO

We suggest that low-energy electrons, released by resonant decay processes, experience substantial scattering on the electron density of excited electrons, which remain a spectator during the decay. As a result, the angular emission distribution is altered significantly. This effect is expected to be a common feature of low-energy secondary electron emission. In this Letter, we exemplify our idea by examining the spectator resonant interatomic Coulombic decay of Ne dimers. Our theoretical predictions are confirmed by a corresponding coincidence experiment.

8.
Nat Commun ; 8(1): 2266, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273745

RESUMO

The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

10.
Phys Rev Lett ; 117(24): 243002, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-28009186

RESUMO

We investigate the temporal evolution of molecular frame angular distributions of Auger electrons emitted during ultrafast dissociation of HCl following a resonant single-photon excitation. The electron emission pattern changes its shape from that of a molecular σ orbital to that of an atomic p state as the system evolves from a molecule into two separated atoms.

11.
Klin Padiatr ; 228(5): 245-50, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27617760

RESUMO

OBJECTIVE: To identify obstetric and neonatal risk factors associated with the development of germinal matrix-intraventricular hemorrhage (GM-IVH) in high-risk preterm neonates. METHODS AND PATIENTS: Data from 279 preterm infants (246 mothers) with a gestational age≤28+0 weeks admitted to our NICU between January 2004 and December 2009 were analyzed retrospectively. Occurrence of (GM-IVH) was diagnosed by using ultrasound and important clinical variables were extracted from the patient charts. Infants were divided into 2 groups: GM-IVH and non-GM-IVH. To account for multiple gestation, generalized estimation equations (GEE) were used for univariate analysis and for the evaluation of independent risk factors. RESULTS: A low 5-min APGAR-Score, multiple birth, low arterial blood pressure at NICU admission, hypercapnia during the first 72 h of life in life and absence of any antenatal corticosteroids were found to be significant independent risk factors in the development of GM-IVH. CONCLUSION: Preterm infants with low arterial blood pressure, absence of antenatal corticosteroids, low 5-min APGAR-Score, higher paCO2 within the first 3 days of life and multiple gestation were at higher risk to develop GM-IVH. Avoiding these risk factors may help to decrease the rate of GM-IVH.


Assuntos
Hemorragia Cerebral/diagnóstico , Ventrículos Cerebrais , Lactente Extremamente Prematuro , Doenças do Prematuro/etiologia , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Doenças do Prematuro/diagnóstico , Unidades de Terapia Intensiva Neonatal , Masculino , Gravidez , Estudos Retrospectivos , Fatores de Risco
12.
Phys Rev Lett ; 117(8): 083002, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27588854

RESUMO

We investigate the photodouble ionization of H_{2} molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. In contrast, the quasiparticle consisting of both electrons (i.e., the "dielectron") does. The work highlights the fact that nonlocal effects are embedded everywhere in nature where many-particle processes are involved.

13.
Phys Rev Lett ; 116(7): 073201, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26943532

RESUMO

Even though the study of ion-atom collisions is a mature field of atomic physics, large discrepancies between experiment and theoretical calculations are still common. Here we present experimental results with high momentum resolution on the single ionization of helium induced by 1-MeV protons, and we compare these to theoretical calculations. The overall agreement is strikingly good, and even the first Born approximation yields good agreement between theory and experiment. This has been expected for several decades, but so far has not been accomplished. The influence of projectile coherence effects on the measured data is briefly discussed in terms of an ongoing dispute on the existence of nodal structures in the electron angular emission distributions.

14.
Phys Rev Lett ; 116(4): 043001, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871325

RESUMO

We investigate the dissociation of H_{2}^{+} into a proton and a H^{0} after single ionization with photons of an energy close to the threshold. We find that the p^{+} and the H^{0} do not emerge symmetrically in the case of the H_{2}^{+} dissociating along the 1sσ_{g} ground state. Instead, a preference for the ejection of the p^{+} in the direction of the escaping photoelectron can be observed. This symmetry breaking is strongest for very small electron energies. Our experiment is consistent with a recent prediction by Serov and Kheifets [Phys. Rev. A 89, 031402 (2014)]. In their model, which treats the photoelectron classically, the symmetry breaking is induced by the retroaction of the long-range Coulomb potential onto the dissociating H_{2}^{+}.

15.
Phys Rev Lett ; 117(26): 263001, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28059541

RESUMO

We experimentally study 2p photoionization of neon dimers (Ne_{2}) at a photon energy of hν=36.56 eV. By postselection of ionization events which lead to a dissociation into Ne^{+}+Ne we obtain the photoelectron angular emission distribution in the molecular frame. This distribution is symmetric with respect to the direction of the charged vs neutral fragment. It shows an inverted Cohen-Fano double slit interference pattern of two spherical waves emitted coherently but with opposite phases from the two atoms of the dimer.

16.
Nat Commun ; 5: 5765, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25488049

RESUMO

Helium shows fascinating quantum phenomena unseen in any other element. In its liquid phase, it is the only known superfluid. The smallest aggregates of helium, the dimer (He2) and the trimer (He3) are, in their predicted structure, unique natural quantum objects. While one might intuitively expect the structure of (4)He3 to be an equilateral triangle, a manifold of predictions on its shape have yielded an ongoing dispute for more than 20 years. These predictions range from (4)He3 being mainly linear to being mainly an equilateral triangle. Here we show experimental images of the wave functions of (4)He3 and (3)He(4)He2 obtained by Coulomb explosion imaging of mass-selected clusters. We propose that (4)He3 is a structureless random cloud and that (3)He(4)He2 exists as a quantum halo state.

17.
Phys Rev Lett ; 111(11): 113003, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24074083

RESUMO

We report on the observation of discrete structures in the electron energy distribution for strong field double ionization of argon at 394 nm. The experimental conditions were chosen in order to ensure a nonsequential ejection of both electrons with an intermediate rescattering step. We have found discrete above-threshold ionization like peaks in the sum energy of both electrons, as predicted by all quantum mechanical calculations. More surprisingly, however, is the observation of two above-threshold ionization combs in the energy distribution of the individual electrons.

18.
Phys Rev Lett ; 111(9): 093401, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24033031

RESUMO

During the past 15 years a novel decay mechanism of excited atoms has been discovered and investigated. This so-called interatomic Coulombic decay (ICD) involves the chemical environment of the electronically excited atom: the excitation energy is transferred (in many cases over long distances) to a neighbor of the initially excited particle usually ionizing that neighbor. It turned out that ICD is a very common decay route in nature as it occurs across van der Waals and hydrogen bonds. The time evolution of ICD is predicted to be highly complex, as its efficiency strongly depends on the distance of the atoms involved and this distance typically changes during the decay. Here we present the first direct measurement of the temporal evolution of ICD using a novel experimental approach.

19.
Phys Rev Lett ; 111(1): 013003, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23862999

RESUMO

We investigate the single-photon double ionization of helium at photon energies of 440 and 800 eV. We observe doubly charged ions with close to zero momentum corresponding to electrons emitted back to back with equal energy. These slow ions are the unique fingerprint of an elusive quasifree photon double ionization mechanism predicted by Amusia et al. nearly four decades ago [J. Phys. B 8, 1248 (1975)]. It results from the nondipole part of the electromagnetic interaction. Our experimental data are supported by calculations performed using the convergent close-coupling and time-dependent close-coupling methods.

20.
Phys Rev Lett ; 111(23): 233004, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476268

RESUMO

We investigate the ionization of HeNe from below the He 1s3p excitation to the He ionization threshold. We observe HeNe+ ions with an enhancement by more than a factor of 60 when the He side couples resonantly to the radiation field. These ions are an experimental proof of a two-center resonant photoionization mechanism predicted by Najjari et al. [Phys. Rev. Lett. 105, 153002 (2010)]. Furthermore, our data provide electronic and vibrational state resolved decay widths of interatomic Coulombic decay in HeNe dimers. We find that the interatomic Coulombic decay lifetime strongly increases with increasing vibrational state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA