Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fish Dis ; 46(6): 643-651, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36848441

RESUMO

Tilapia lake virus disease (TiLVD) is an emerging disease in tilapia that is associated with mass mortality affecting global tilapia aquaculture. In this study, red hybrid tilapias (Oreochromis spp.) were experimentally infected by intracoelomic injection with Tilapia lake virus (TiLV) to gain a better understanding of the clinicopathological changes during infection. Pale bodies and gill were observed in infected fish after 7 days of post-challenge (dpc) associated with severe anaemia. Further haematological analysis in TiLV-infected fish revealed decreased levels of haemoglobin and haematocrit at 3 dpc. Common pathological findings included pale and friable liver, pale intestine with catarrhal content, and dark and shrunken spleen in TiLV-infected fish at 7 dpc and 14 dpc. Histologically, reduced numbers of red blood cells and accumulation of melano-macrophage centre in the spleen were found in infected fish at 3 dpc, and severe lesions were more commonly observed at 7 and 14 dpc. Lymphocyte infiltration, syncytial cell formation and multifocal necrotic hepatitis were the prominent pathological findings in the liver of infected fish. The severity of pathological changes was associated with TiLV-infection with higher viral loads and with the expression pattern of pro-inflammatory cytokines and antiviral genes, including interferon regulatory factor 1 (irf1), interleukin (il-8), radical s-adenosyl methionine domain containing 2 (rsad2) and mx. Our study provides a comprehensive analysis of the haematological profile and pathological changes in tilapia during TiLV infection. Overall, lesions present in various organs, together with alteration of host immune response in TiLV-infected fish, indicate the systemic infection of this virus. The knowledge gained from this study improves our understanding of how TiLV causes pathological and haematological changes in tilapia.


Assuntos
Anemia , Ciclídeos , Doenças dos Peixes , Tilápia , Vírus , Animais , Anemia/veterinária
2.
DNA Res ; 29(5)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36214371

RESUMO

Bats (Chiroptera) constitute the second largest order of mammals and have several distinctive features, such as true self-powered flight and strong immunity. The Pendlebury's roundleaf bat, Hipposideros pendleburyi, is endemic to Thailand and listed as a vulnerable species. We employed the 10× Genomics linked-read technology to obtain a genome assembly of H. pendleburyi. The assembly size was 2.17 Gb with a scaffold N50 length of 15,398,518 bases. Our phylogenetic analysis placed H. pendleburyi within the rhinolophoid clade of the suborder Yinpterochiroptera. A synteny analysis showed that H. pendleburyi shared conserved chromosome segments (up to 105 Mb) with Rhinolophus ferrumequinum and Phyllostomus discolor albeit having different chromosome numbers and belonging different families. We found positive selection signals in genes involved in inflammation, spermatogenesis and Wnt signalling. The analyses of transposable elements suggested the contraction of short interspersed nuclear elements (SINEs) and the accumulation of young mariner DNA transposons in the analysed hipposiderids. Distinct mariners were likely horizontally transferred to hipposiderid genomes over the evolution of this family. The lineage-specific profiles of SINEs and mariners might involve in the evolution of hipposiderids and be associated with the phylogenetic separations of these bats from other bat families.


Assuntos
Quirópteros , Elementos de DNA Transponíveis , Animais , Quirópteros/genética , Genômica , Humanos , Filogenia
3.
Mitochondrial DNA B Resour ; 7(10): 1814-1816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278125

RESUMO

Intsia bijuga (Colebr.) Kuntze. (1891) is a threatened mangrove species, belonging to the Fabaceae family and is native to the western Pacific coast and Southeast Asia. Here, we applied short-read Illumina technology to sequence and assemble its chloroplast genome. The complete chloroplast genome is 158,363 bp in length, composed of one large single-copy (LSC) region of 87,489 bp, one small single-copy (SSC) region of 19,438 bp, and a pair of inverted repeats (IRs) of 25,719 bp. A total of 129 unique genes were annotated, comprising 84 protein-coding genes, eight rRNA genes, and 37 tRNA genes. Our phylogenetic analysis showed the placement of I. bijuga (OL699920.1) with Afzelia species within Fabaceae family.

4.
Viruses ; 13(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207768

RESUMO

Tilapia tilapinevirus, or tilapia lake virus (TiLV), is a highly contagious virus found in tilapia and its hybrid species that has been reported worldwide, including in Asia, the Americas, and Africa. In this study, we experimentally challenged Mozambique tilapia (Oreochromis mossambicus) with a virulent TiLV strain, VETKU-TV01, at both low (1 × 103 TCID50/mL) and high (1 × 105 TCID50/mL) concentration. After the challenge, the Mozambique tilapia showed pale skin with some hemorrhage and erosion, lethargy, abdominal swelling, congestion around the eye, and exophthalmos; there was a cumulative mortality rate at 48.89% and 77.78% in the groups that received the low and high concentration, respectively. Quantitative PCR and in situ hybridization confirmed the presence of TiLV in the internal organs of moribund fish. Notably, severe histopathological changes, including glycogen depletion, syncytial hepatic cells containing multiple nuclei and intracytoplasmic inclusion bodies, and infiltration of melanomacrophage into the spleen, were frequently found in the Mozambique tilapia challenged with high TiLV concentration. Comparatively, the infectivity and pathology of the TiLV infection in Mozambique tilapia and red hybrid tilapia (Oreochromis spp.) were found to be similar. Our results confirmed the susceptibility of Mozambique tilapia, which has recently been determined to be a vulnerable species, to TiLV infection, expanding knowledge that the virus can cause disease in this fish species.


Assuntos
Doenças dos Peixes/epidemiologia , Doenças dos Peixes/virologia , Vírus de RNA , Tilápia/virologia , Animais , Biópsia , Suscetibilidade a Doenças , Doenças dos Peixes/patologia , Hibridização In Situ , Fenótipo
5.
Pathogens ; 9(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172079

RESUMO

Tilapia lake virus (TiLV) causes an emerging viral disease associated with high mortality and economic damage in tilapia farming around the world. The use of probiotics in aquaculture has been suggested as an alternative to antibiotics and drugs to reduce the negative impact of bacterial and viral infections. In this study, we investigate the effect of probiotic Bacillus spp. supplementation on mortality, viral load, and expression of immune-related genes in red hybrid tilapia (Oreochromis spp.) upon TiLV infection. Fish were divided into three groups, and fed with: control diet, 0.5% probiotics-supplemented diet, and 1% probiotics-supplemented diet. After 21 days of experimental feeding, the three groups were infected with TiLV and monitored for mortality and growth performances, while organs were sampled at different time points to measure viral load and the transcription modulation of immune response markers. No significant difference was found among the groups in terms of weight gain (WG), average daily gain (ADG), feed efficiency (FE), or feed conversion ratio (FCR). A lower cumulative mortality was retrieved from fish fed 0.5% and 1% probiotics (25% and 24%, respectively), compared to the control group (32%). Moreover, fish fed with 1% probiotic diet had a significantly lower viral load, than those fed with 0.5% probiotic and control diet at 5, 6, 9, and 12 days post infection-challenge (dpc). The expression patterns of immune-related genes, including il-8 (also known as CXCL8), ifn-γ, irf-3, mx, rsad-2 (also known as VIPERIN) showed significant upregulation upon probiotic treatment during the peak of TiLV pathogenesis (between 9 and 12 dpc) and during most of the study period in fish fed with 1% probiotics-supplemented diet. Taken together, these findings indicate that dietary supplementation using Bacillus spp. probiotics may have beneficial effects to strengthen tilapia immunity and resistance against TiLV infections. Therefore, probiotic treatments may be preventively administered to reduce losses caused by this emerging viral infection in tilapia aquaculture.

6.
Vet World ; 13(8): 1667-1673, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33061243

RESUMO

BACKGROUND AND AIM: MicroRNAs (miRNAs) are responsible for gene expression control at the post-transcription level in many species. Several miRNAs are required in the regulation of immune responses, such as B-cell differentiation, T-cell receptor signaling pathway, CD4+ T cell selection, and so on. Studies on miRNAs have been extensively conducted in humans and mice; however, reports relevant to miRNAs, especially miR-155 and miR-181, in pigs are limited. Consequently, the present study aimed to investigate the structures, target genes, and expressions of miR-155 and miR-181 in various porcine cells and tissues. MATERIALS AND METHODS: Five healthy male pigs from a porcine reproductive and respiratory syndrome virus-negative farm were studied. Before slaughter, blood samples were collected for peripheral blood mononuclear cell isolation. After slaughter, samples of spleen, lymph nodes, and forelimb muscles were collected. Both miR-155 and miR-181 were investigated for their structures with RNAfold web server, for their target genes from three online web servers, and for their expressions using polymerase chain reaction (PCR). RESULTS: The structures of miR-155 and miR-181 contained hairpins with free energies of -35.27 and -35.29 kcal/mole, respectively. Target gene prediction revealed that miR-155 had perfect complementarity with Socs1 and Mapk3k14, while miR-181 had perfect complementarity with Ddx3x, Nfat5, Foxp1, and Mpp5. PCR showed that both miRNAs were detectable from all investigated cells and tissues. Moreover, the highest expression of both miRNAs was found from the lymph node of the pigs. CONCLUSION: Both miR-155 and miR-181 might be involved with the regulation of porcine immune functions as both miRNAs were detected in several cells and tissues of the pigs. In addition, they had very high complementarities with the seed regions of several immune-related genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA