RESUMO
Gastric peristalsis is governed by electrical "slow waves" generally assumed to travel from proximal to distal stomach (antegrade propagation) in symmetric rings. While alternative slow wave patterns have been correlated with gastric disorders, their mechanisms and how they alter contractions remain understudied. Optical electromechanical mapping, a developing field in cardiac electrophysiology, images electrical and mechanical physiology simultaneously. Here, we translate this technology to the in-vivo porcine stomach. Stomachs were surgically exposed and a fluorescent dye (di-4-ANEQ(F)PTEA) that transduces the membrane potential (Vm) was injected through the right gastroepiploic artery. Fluorescence was excited by LEDs and imaged with one or two 256x256 pixel cameras. Motion artifact was corrected using a marker-based motion tracking method and excitation ratiometry, which cancels common-mode artifact. Tracking marker displacement also enabled gastric deformation to be measured. We validated detection of electrical activation and Vm morphology against alternative non-optical technologies. Non-antegrade slow waves and propagation direction differences between the anterior and posterior stomach were commonly present in our data. However, sham experiments suggest they were a feature of the animal preparation and not an artifact of optical mapping. In experiments to demonstrate the method's capabilities, we found that repolarization did not always follow at a fixed time behind activation "wavefronts," which could be a factor in dysrhythmia. Contraction strength and the latency between electrical activation and contraction differed between antegrade and non-antegrade propagation. In conclusion, optical electromechanical mapping, which simultaneously images electrical and mechanical activity, enables novel questions regarding normal and abnormal gastric physiology to be explored.
RESUMO
Cardiac optical mapping has traditionally been performed in ex-vivo, motion-arrested hearts. Recently, in-situ cardiac optical mapping has been made possible by both motion correction techniques and long-wavelength voltage sensitive dyes (VSDs). However, VSDs have been observed to wash out quickly from blood-perfused in-situ hearts. In this study, we evaluate the performance of a newly developed VSD, di-5-ANEQ(F)PTEA, relative to an earlier VSD, di-4-ANEQ(F)PTEA. We find that di-5-ANEQ(F)PTEA persists over 3 times longer, produces improved signal-to-noise ratio, and does not prolong loading unacceptably.Clinical Relevance-Optical mapping has provided many insights into cardiac arrhythmias, but has traditionally been limited to ex-vivo preparations. The present findings extend the utility of optical mapping in the more realistic in-vivo setting and may eventually enable its use in patients.
Assuntos
Corantes Fluorescentes , Parada Cardíaca , Humanos , Coração/diagnóstico por imagemRESUMO
Gastric rhythmic contractions are regulated by bioelectrical events known as slow waves (SW). Abnormal SW activity is associated with gastric motility disorders. Gastric pacing is a potential treatment method to restore rhythmic SW activity. However, to date, the efficacy of gastric pacing is inconsistent and the underlying mechanisms of gastric pacing are poorly understood. Optical mapping is widely used in cardiac electrophysiology studies. Its immunity to pacing artifacts offers a distinct advantage over conventional electrical mapping for studying pacing. In the present study, we first found that optical mapping can image pacing-induced virtual electrode polarization patterns in the stomach (adjacent regions of depolarized and hyperpolarized tissue). Second, we found that elicited SWs usually (15 of 16) originated from the depolarized areas of the stimulated region (virtual cathodes). To our knowledge, this is the first direct observation of virtual electrode polarization patterns in the stomach. Conclusions: Optical mapping can image virtual electrode polarization patterns during gastric pacing with high spatial resolution.Clinical Relevance- Gastric pacing is a potential therapeutic method for gastric motility disorders. This study provides direct observation of virtual electrode polarization pattern during gastric pacing and improves our understanding of the mechanisms underlying gastric pacing..
Assuntos
Marca-Passo Artificial , Estômago , Estômago/diagnóstico por imagem , Estômago/fisiologia , EletrodosRESUMO
Optical mapping has been widely used in the study of cardiac electrophysiology in motion-arrested, ex vivo heart preparations. Recent developments in motion artifact mitigation techniques have made it possible to optically map beating ex vivo hearts, enabling the study of cardiac electromechanics using optical mapping. However, the ex vivo setting imposes limitations on optical mapping such as altered metabolic states, oversimplified mechanical loads, and the absence of neurohormonal regulation. In this study, we demonstrate optical electromechanical mapping in an in vivo heart preparation. Swine hearts were exposed via median sternotomy. Voltage-sensitive dye, either di-4-ANEQ(F)PTEA or di-5-ANEQ(F)PTEA, was injected into the left anterior descending artery. Fluorescence was excited by alternating green and amber light for excitation ratiometry. Cardiac motion during sinus and paced rhythm was tracked using a marker-based method. Motion tracking and excitation ratiometry successfully corrected most motion artifact in the membrane potential signal. Marker-based motion tracking also allowed simultaneous measurement of epicardial deformation. Reconstructed membrane potential and mechanical deformation measurements were validated using monophasic action potentials and sonomicrometry, respectively. Di-5-ANEQ(F)PTEA produced longer working time and higher signal/noise ratio than di-4-ANEQ(F)PTEA. In addition, we demonstrate potential applications of the new optical mapping system including electromechanical mapping during vagal nerve stimulation, fibrillation/defibrillation. and acute regional ischemia. In conclusion, although some technical limitations remain, optical mapping experiments that simultaneously image electrical and mechanical function can be conducted in beating, in vivo hearts.
Assuntos
Coração , Suínos , Animais , Coração/diagnóstico por imagem , Coração/fisiologia , Potenciais da Membrana , Potenciais de Ação/fisiologia , Movimento (Física)RESUMO
BACKGROUND: Experiments in mammalian models of cardiac injury suggest that the cardiomyocyte-specific overexpression of CCND2 (cyclin D2, in humans) improves recovery from myocardial infarction (MI). The primary objective of this investigation was to demonstrate that our specific modified mRNA translation system (SMRTs) can induce CCND2 expression in cardiomyocytes and replicate the benefits observed in other studies of cardiomyocyte-specific CCND2 overexpression for myocardial repair. METHODS: The CCND2-cardiomyocyte-specific modified mRNA translation system (cardiomyocyte SMRTs) consists of 2 modRNA constructs: one codes for CCND2 and contains a binding site for L7Ae, and the other codes for L7Ae and contains recognition elements for the cardiomyocyte-specific microRNAs miR-1 and miR-208. Thus, L7Ae suppresses CCND2 translation in noncardiomyocytes but is itself suppressed by endogenous miR-1 and -208 in cardiomyocytes, thereby facilitating cardiomyocyte-specific CCND2 expression. Experiments were conducted in both mouse and pig models of MI, and control assessments were performed in animals treated with an SMRTs coding for the cardiomyocyte-specific expression of luciferase or green fluorescent protein (GFP), in animals treated with L7Ae modRNA alone or with the delivery vehicle, and in Sham-operated animals. RESULTS: CCND2 was abundantly expressed in cultured, postmitotic cardiomyocytes 2 days after transfection with the CCND2-cardiomyocyte SMRTs, and the increase was accompanied by the upregulation of markers for cell-cycle activation and proliferation (eg, Ki67 and Aurora B kinase). When the GFP-cardiomyocyte SMRTs were intramyocardially injected into infarcted mouse hearts, the GFP signal was observed in cardiomyocytes but no other cell type. In both MI models, cardiomyocyte proliferation (on day 7 and day 3 after treatment administration in mice and pigs, respectively) was significantly greater, left-ventricular ejection fractions (days 7 and 28 in mice, days 10 and 28 in pigs) were significantly higher, and infarcts (day 28 in both species) were significantly smaller in animals treated with the CCND2-cardiomyocyte SMRTs than in any other group that underwent MI induction. CONCLUSIONS: Intramyocardial injections of the CCND2-cardiomyocyte SMRTs promoted cardiomyocyte proliferation, reduced infarct size, and improved cardiac performance in small and large mammalian hearts with MI.
Assuntos
Ciclina D2 , MicroRNAs , Infarto do Miocárdio , Animais , Camundongos , Ciclo Celular , Ciclina D2/genética , Modelos Animais de Doenças , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SuínosRESUMO
Ectopic activation during early acute regional ischemia may initiate fatal reentrant arrhythmias. However, the origin of this ectopy remains poorly understood. Studies suggest that systolic stretch arising from dyskinesia in ischemic tissue may cause ectopic depolarization due to cardiac mechanosensitivity. The aim of this study was to investigate the link between mechanical stretch and ectopic electrical activation during early acute regional ischemia. We used a recently developed optical mapping technique capable of simultaneous imaging of mechanical deformation and electrical activation in isolated hearts. Eight domestic swine hearts were prepared in left ventricular working mode (LVW), in which the left ventricle was loaded and contracting. In an additional eight non-working (NW) hearts, contraction was pharmacologically suppressed with blebbistatin and the left ventricle was not loaded. In both groups, the left anterior descending coronary artery was tied below the first diagonal branch. Positive mechanical stretch (bulging) during systole was observed in the ischemic zones of LVW, but not NW, hearts. During ischemia phase 1a (0-15 min post-occlusion), LVW hearts had more ectopic beats than NW hearts (median: 19, interquartile range: 10-28 vs. median: 2, interquartile range: 1-6; p = 0.02); but the difference during phase 1b (15-60 min post-occlusion) was not significant (median: 27, interquartile range: 22-42 vs. median: 16, interquartile range: 12-31; p = 0.37). Ectopic beats arose preferentially from the ischemic border zone in both groups (p < 0.01). In LVW hearts, local mechanical stretch was only occasionally co-located with ectopic foci (9 of 69 ectopic beats). Despite the higher rate of ectopy observed in LVW hearts during ischemia phase 1a, the ectopic beats generally did not arise by the hypothesized mechanism in which ectopic foci are generated by co-local epicardial mechanical stretch.
Assuntos
Arritmias Cardíacas , Coração , Suínos , Animais , Ventrículos do Coração/diagnóstico por imagem , Função Ventricular Esquerda , Isquemia/complicaçõesAssuntos
Miócitos Cardíacos , Transcriptoma , Animais , Animais Recém-Nascidos , Proliferação de Células , Coração , Humanos , Regeneração , SuínosRESUMO
BACKGROUND: Mortality for infants on the heart transplant waitlist remains unacceptably high, and available mechanical circulatory support is suboptimal. Our goal is to demonstrate the feasibility of utilizing genetically engineered pig (GEP) heart as a bridge to allotransplantation by transplantation of a GEP heart in a baboon. METHODS: Four baboons underwent orthotopic cardiac transplantation from GEP donors. All donor pigs had galactosyl-1,3-galactose knocked out. Two donor pigs had human complement regulatory CD55 transgene and the other 2 had human complement regulatory CD46 and thrombomodulin. Induction immunosuppression included thymoglobulin, and anti-CD20. Maintenance immunosuppression was rapamycin, anti-CD-40, and methylprednisolone. One donor heart was preserved with University of Wisconsin solution and the other three with del Nido solution. RESULTS: All baboons weaned from cardiopulmonary bypass. B217 received a donor heart preserved with University of Wisconsin solution. Ventricular arrhythmias and depressed cardiac function resulted in early death. All recipients of del Nido preserved hearts easily weaned from cardiopulmonary bypass with minimal inotropic support. B15416 and B1917 survived for 90 days and 241 days, respectively. Histopathology in B15416 revealed no significant myocardial rejection but cellular infiltrate around Purkinje fibers. Histopathology in B1917 was consistent with severe rejection. B37367 had uneventful transplant but developed significant respiratory distress with cardiac arrest. CONCLUSIONS: Survival of B15416 and B1917 demonstrates the feasibility of pursuing additional research to document the ability to bridge an infant to cardiac allotransplant with a GEP heart.
Assuntos
Transplante de Coração , Transplante Heterólogo , Adenosina , Alopurinol , Animais , Engenharia Genética , Glutationa , Rejeição de Enxerto , Sobrevivência de Enxerto , Transplante de Coração/métodos , Humanos , Lactente , Insulina , Soluções para Preservação de Órgãos , Papio , Rafinose , Suínos , Doadores de Tecidos , Transplante Heterólogo/métodosRESUMO
BACKGROUND: Human induced pluripotent stem cells with normal (wild-type) or upregulated (overexpressed) levels of CCND2 (cyclin D2) expression were differentiated into cardiomyocytes (CCND2WTCMs or CCND2OECMs, respectively) and injected into infarcted pig hearts. METHODS: Acute myocardial infarction was induced by a 60-minute occlusion of the left anterior descending coronary artery. Immediately after reperfusion, CCND2WTCMs or CCND2OECMs (3×107 cells each) or an equivalent volume of the delivery vehicle was injected around the infarct border zone area. RESULTS: The number of the engrafted CCND2OECMs exceeded that of the engrafted CCND2WTCMs from 6- to 8-fold, rising from 1 week to 4 weeks after implantation. In contrast to the treatment with the CCND2WTCMs or the delivery vehicle, the administration of CCND2OECM was associated with significantly improved left ventricular function, as revealed by magnetic resonance imaging. This correlated with reduction of infarct size, fibrosis, ventricular hypertrophy, and cardiomyocyte apoptosis, and increase of vascular density and arterial density, as per histologic analysis of the treated hearts. Expression of cell proliferation markers (eg, Ki67, phosphorylated histone 3, and Aurora B kinase) was also significantly upregulated in the recipient cardiomyocytes from the CCND2OECM-treated than from the CCND2WTCM-treated pigs. The cell proliferation rate and the hypoxia tolerance measured in cultured human induced pluripotent stem cell cardiomyocytes were significantly greater after treatment with exosomes isolated from the CCND2OECMs (CCND2OEExos) than from the CCND2WTCMs (CCND2WTExos). As demonstrated by our study, CCND2OEExos can also promote the proliferation activity of postnatal rat and adult mouse cardiomyocytes. A bulk miRNA sequencing analysis of CCND2OEExos versus CCND2WTExos identified 206 and 91 miRNAs that were significantly upregulated and downregulated, respectively. Gene ontology enrichment analysis identified significant differences in the expression profiles of miRNAs from various functional categories and pathways, including miRNAs implicated in cell-cycle checkpoints (G2/M and G1/S transitions), or the mechanism of cytokinesis. CONCLUSIONS: We demonstrated that enhanced potency of CCND2OECMs promoted myocyte proliferation in both grafts and recipient tissue in a large mammal acute myocardial infarction model. These results suggest that CCND2OECMs transplantation may be a potential therapeutic strategy for the repair of infarcted hearts.
Assuntos
Diferenciação Celular/genética , Ciclina D2/genética , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Transplante de Células-Tronco , Animais , Biomarcadores , Técnicas de Cultura de Células , Proliferação de Células , Separação Celular , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/etiologia , Miócitos Cardíacos/citologia , Neovascularização Fisiológica/genética , Recuperação de Função Fisiológica , Suínos , Resultado do TratamentoRESUMO
INTRODUCTION: Mechanical chest compression devices allow for variation in chest compression (CCs) characteristics from moment to moment, enabling therapy that is not feasible for manual CCs. Effects of varying compressions over time have not been studied. In a randomized trial in an experimental model of prolonged cardiac arrest, we compared time-varying CPR (TVCPR), alternating between 100 and 200 compressions per minute (cpm) every 6â¯s, to guidelines CPR (Control). METHODS: Ventricular fibrillation (VF) was electrically induced in 20 anesthetized pigs (28.4-45.8â¯kg). Following 10â¯min of untreated VF, cardiopulmonary resuscitation (CPR) began, randomized to TVCPR or Control. Rate of return of spontaneous circulation (ROSC), 4-h survival, and hemodynamics during the first 5â¯min of CPR were compared between groups. Moment-to-moment hemodynamic effects of changing the CC rate were analyzed. RESULTS: TVCPR improved the proportion of ROSC over time compared to Control (pâ¯<â¯0.05) but ROSC (9/10 vs. 5/10) and 4-h survival (8/10 vs 5/10) did not differ significantly between groups. During CPR, coronary and cerebral perfusion pressures and femoral artery pressure did not differ between groups; however, end-tidal CO2 and mixed venous O2 saturation were higher, and pulmonary artery pressure was lower (pâ¯<â¯0.05) for TVCPR than Control. During TVCPR, switching to 100â¯cpm increased coronary perfusion pressure (pâ¯<â¯0.05), and switching to 200â¯cpm increased cerebral perfusion pressure (pâ¯<â¯0.05). CONCLUSIONS: Time-varying CPR significantly improved indicators of net forward blood flow and proportion of ROSC over time without negatively impacting perfusion pressures. Alternating CC rate alternates between perfusion pressures favoring the brain and those favoring the heart. Time-varying CPR represents a new avenue of research for optimizing CPR. INSTITUTIONAL PROTOCOL NUMBER: University of Alabama at Birmingham Institutional Animal Care and Use Committee (IACUC) Protocol Number 140406860.
RESUMO
BACKGROUND: Shocks near defibrillation threshold (nDFT) strength commonly extinguish all ventricular fibrillation (VF) wavefronts, but a train of rapid, well-organized postshock activations (PAs) typically appears before sinus rhythm ensues. If one of the PA waves undergoes partial propagation block (wavebreak), reentry may be induced, causing VF to reinitiate and the shock to fail. OBJECTIVE: The purpose of this study was to determine whether wavebreak leading to VF reinititation following nDFT shocks occurs preferentially at the right ventricular insertion (RVI), which previous studies have identified as a key site for wavebreak. METHODS: We used panoramic optical mapping to image the ventricular epicardium of 6 isolated swine hearts during nDFT defibrillation episodes. After each experiment, the hearts were fixed and their geometry scanned with magnetic resonance imaging (MRI). The MRI and mapping datasets were spatially coregistered. For failed shocks, we identified the site of the first wavebreak of a PA wave during VF reinitiation. RESULTS: We recorded 59 nDFT failures. In 31 of these, the first wavebreak event occurred within 1 cm of the RVI centerline, most commonly on the anterior side of the right ventricular insertion (aRVI) (23/31). The aRVI region occupies 16.8% ± 2.5% of the epicardial surface and would be expected to account for only 10 wavebreaks if they were uniformly distributed. By χ2 analysis, aRVI wavebreaks were significantly overrepresented. CONCLUSION: The anterior RVI is a key site in promoting nDFT failure. Targeting this site to prevent wavebreak could convert defibrillation failure to success and improve defibrillation efficacy.
Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Cardioversão Elétrica/métodos , Ventrículos do Coração/fisiopatologia , Fibrilação Ventricular/cirurgia , Animais , Modelos Animais de Doenças , Suínos , Fibrilação Ventricular/fisiopatologiaRESUMO
Cell therapy treatment of myocardial infarction (MI) is mediated, in part, by exosomes secreted from transplanted cells. Thus, we compared the efficacy of treatment with a mixture of cardiomyocytes (CMs; 10 million), endothelial cells (ECs; 5 million), and smooth muscle cells (SMCs; 5 million) derived from human induced pluripotent stem cells (hiPSCs), or with exosomes extracted from the three cell types, in pigs after MI. Female pigs received sham surgery; infarction without treatment (MI group); or infarction and treatment with hiPSC-CMs, hiPSC-ECs, and hiPSC-SMCs (MI + Cell group); with homogenized fragments from the same dose of cells administered to the MI + Cell group (MI + Fra group); or with exosomes (7.5 mg) extracted from a 2:1:1 mixture of hiPSC-CMs:hiPSC-ECs:hiPSC-SMCs (MI + Exo group). Cells and exosomes were injected into the injured myocardium. In vitro, exosomes promoted EC tube formation and microvessel sprouting from mouse aortic rings and protected hiPSC-CMs by reducing apoptosis, maintaining intracellular calcium homeostasis, and increasing adenosine 5'-triphosphate. In vivo, measurements of left ventricular ejection fraction, wall stress, myocardial bioenergetics, cardiac hypertrophy, scar size, cell apoptosis, and angiogenesis in the infarcted region were better in the MI + Cell, MI + Fra, and MI + Exo groups than in the MI group 4 weeks after infarction. The frequencies of arrhythmic events in animals from the MI, MI + Cell, and MI + Exo groups were similar. Thus, exosomes secreted by hiPSC-derived cardiac cells improved myocardial recovery without increasing the frequency of arrhythmogenic complications and may provide an acellular therapeutic option for myocardial injury.
Assuntos
Exossomos , Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Animais , Células Cultivadas , Células Endoteliais , Feminino , Humanos , Camundongos , Infarto do Miocárdio/terapia , Miocárdio , Miócitos Cardíacos , Volume Sistólico , Suínos , Função Ventricular EsquerdaRESUMO
Mammalian cardiomyocytes exit the cell cycle shortly after birth. As a result, an occurrence of coronary occlusion-induced myocardial infarction often results in heart failure, postinfarction LV dilatation, or death, and represents one of the most significant public health morbidities worldwide. Interestingly however, the hearts of neonatal pigs have been shown to regenerate following an acute myocardial infarction (MI) occuring on postnatal day 1 (P1); a recovery period which is accompanied by an increased expression of markers for cell-cycle activity, and suggests that early postnatal myocardial regeneration may be driven in part by the MI-induced proliferation of pre-existing cardiomyocytes. In this study, we identified signaling pathways known to regulate the cell cycle, and determined of these, the pathways persistently upregulated in response to MI injury. We identified five pathways (mitogen associated protein kinase [MAPK], Hippo, cyclic [cAMP], Janus kinase/signal transducers and activators of transcription [JAK-STAT], and Ras) which were comprehensively upregulated in cardiac tissues collected on day 7 (P7) and/or P28 of the P1 injury hearts. Several of the initiating master regulators (e.g., CSF1/CSF1R, TGFB, and NPPA) and terminal effector molecules (e.g., ATF4, FOS, RELA/B, ITGB2, CCND1/2/3, PIM1, RAF1, MTOR, NKF1B) in these pathways were persistently upregulated at day 7 through day 28, suggesting there exists at least some degree of regenerative activity up to 4 weeks following MI at P1. Our observations provide a list of key regulators to be examined in future studies targeting cell-cycle activity as an avenue for myocardial regeneration.
Assuntos
Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Animais , Animais Recém-Nascidos , AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases , Infarto do Miocárdio/metabolismo , Suínos , Fatores de TempoRESUMO
The mortality of patients suffering from acute myocardial infarction is linearly related to the infarct size. As regeneration of cardiomyocytes from cardiac progenitor cells is minimal in the mammalian adult heart, we have explored a new therapeutic approach, which leverages the capacity of nanomaterials to release chemicals over time to promote myocardial protection and infarct size reduction. Initial screening identified 2 chemicals, FGF1 and CHIR99021 (a Wnt1 agonist/GSK-3ß antagonist), which synergistically enhance cardiomyocyte cell cycle in vitro. Poly-lactic-co-glycolic acid nanoparticles (NPs) formulated with CHIR99021 and FGF1 (CHIR + FGF1-NPs) provided an effective slow-release system for up to 4 weeks. Intramyocardial injection of CHIR + FGF1-NPs enabled myocardial protection via reducing infarct size by 20%-30% in mouse or pig models of postinfarction left ventricular (LV) remodeling. This LV structural improvement was accompanied by preservation of cardiac contractile function. Further investigation revealed that CHIR + FGF1-NPs resulted in a reduction of cardiomyocyte apoptosis and increase of angiogenesis. Thus, using a combination of chemicals and an NP-based prolonged-release system that works synergistically, this study demonstrates a potentially novel therapy for LV infarct size reduction in hearts with acute myocardial infarction.
Assuntos
Fator 1 de Crescimento de Fibroblastos/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Nanopartículas , Piridinas/farmacologia , Pirimidinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacosRESUMO
OBJECTIVES: This study tested the hypothesis that a biphasic defibrillation waveform with an ascending first phase (ASC) causes less myocardial damage by pathology and injury current than a standard biphasic truncated exponential (BTE) waveform in a swine model. BACKGROUND: Although lifesaving, defibrillation shocks have significant iatrogenic effects that reduce their benefit for patient survival. METHODS: An ASC waveform with an 8-ms linear ramp followed by an additional positive 0.5-ms decaying portion with amplitudes of 20 J (ASC 20J) and 25 J (ASC 25J) was used. The control was a 25-J BTE conventional waveform (BTE 25J) RESULTS: The ASC 20J and ASC 25J shocks were both successful in 6 of 6 pigs, but the BTE 25J was successful in only 6 of 14 pigs (p < 0.05). Post-shock ST-segment elevation (injury current) in the right ventricular electrode was significantly greater with BTE 25J than with ASC 20J and ASC 25J. With a blinded pathology reading, hemorrhage, inflammation, thrombi, and necrosis 24 h post-shock were significantly greater with BTE 25J than with ASC 20J and ASC 25J. Troponin levels were also markedly lower at 3, 4, 5, and 6 h post-shock. CONCLUSIONS: Defibrillation shocks cause electrophysiological, histological, and biochemical signs of myocardial damage and necrosis. These signs of damage are markedly less for an ASC waveform than for a conventional BTE waveform.
Assuntos
Desfibriladores , Cardioversão Elétrica , Ventrículos do Coração , Miocárdio/patologia , Animais , Desfibriladores/efeitos adversos , Desfibriladores/normas , Modelos Animais de Doenças , Cardioversão Elétrica/efeitos adversos , Cardioversão Elétrica/métodos , Cardioversão Elétrica/normas , Eletrocardiografia , Eletrodos , Feminino , Ventrículos do Coração/lesões , Ventrículos do Coração/fisiopatologia , Masculino , Necrose/etiologia , Suínos , Troponina C/sangueRESUMO
BACKGROUND: Double-Sequential Defibrillation (DSD) is the near-simultaneous use of two defibrillators to treat refractory VF. We hypothesized that (1) risk of DSD-associated defibrillator damage depends on shock vector and (2) the efficacy of DSD depends on inter-shock time. METHODS: Part 1: risk of defibrillator damage was assessed in three anaesthetized pigs by applying two sets of defibrillation electrodes in six different configurations (near-orthogonal or near-parallel vectors). Ten 360J shocks were delivered from one set of pads and peak voltage was measured across the second set. Part 2: the dependence of DSD efficacy on inter-shock time was assessed in ten anaesthetized pigs. Electrodes were applied in lateral-lateral (LL) and anterior-posterior positions. Control (LL Stacked Shocks; one vector, two shocks â¼10 s apart) and DSD therapies (Overlapping, 10 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1000 ms apart) were tested in a block randomized design treating electrically-induced VF (n = â¼89 VF episodes/therapy). Shock energies were selected to achieve 25% shock success for a single LL shock. RESULTS: Part 1: peak voltage delivered was 1833 ± 48 V (mean ± 95%CI). Peak voltage exposure was, on average, 10-fold higher for parallel than orthogonal vectors (p < 0.0001). Part 2: DSD efficacy compared to Stacked LL shocks was higher for Overlapping, 10 ms, and 100 ms (p < 0.05); lower at 50 ms (p < 0.05); and not different at 200 ms or longer inter-shock times. CONCLUSION: Risk of DSD-associated defibrillator damage can be mitigated by using near-orthogonal shock vectors. DSD efficacy is highly dependent on the inter-shock time and can be better, worse, or no different than stacked shocks from a single vector. INSTITUTIONAL PROTOCOL NUMBER: University of Alabama at Birmingham Institutional Animal Care and Use Committee (IACUC) Protocol Number 06860.
Assuntos
Desfibriladores , Cardioversão Elétrica/métodos , Fibrilação Ventricular/terapia , Animais , Eletrodos , Feminino , Humanos , Masculino , Distribuição Aleatória , SuínosRESUMO
The aim of this paper is to develop and evaluate a novel imaging method [spatial gradient sparse in frequency domain (SSF)] for the reconstruction of activation sequences of ventricular arrhythmia from noninvasive body surface potential map (BSPM) measurements. We formulated and solved the electrocardiographic inverse problem in the frequency domain, and the activation time was encoded in the phase information of the imaging solution. A cellular automaton heart model was used to generate focal ventricular tachycardia (VT). Different levels of Gaussian white noise were added to simulate noise-contaminated BSPM. The performance of SSF was compared with that of weighted minimum norm inverse solution. We also evaluated the method in a swine model with simultaneous intracardiac and body surface recordings. Four reentrant VTs were observed in pigs with myocardial infarction generated by left anterior descending artery occlusion. The imaged activation sequences of reentrant VTs were compared with those obtained from intracardiac electrograms. In focal VT simulation, SSF has increased the correlation coefficient (CC) by 5% and decreased localization errors (LEs) by 2.7 mm on average under different noise levels. In the animal validation with reentrant VT, SSF has achieved an average CC of 88% and an average LE of 6.3 mm in localizing the earliest and latest activation site in the reentry circuit. Our promising results suggest that the SSF provides noninvasive imaging capability of detecting and mapping macro-reentrant circuits in 3-D ventricular space. The SSF may become a useful imaging tool of identifying and localizing the potential targets for ablation of focal and reentrant VT.
Assuntos
Técnicas de Imagem Cardíaca/métodos , Processamento de Imagem Assistida por Computador/métodos , Taquicardia Ventricular/diagnóstico por imagem , Algoritmos , Animais , Mapeamento Potencial de Superfície Corporal , Eletrocardiografia , Feminino , Modelos Cardiovasculares , Processamento de Sinais Assistido por Computador , SuínosRESUMO
BACKGROUND: Improved understanding of the details of gastric slow wave propagation could potentially inform new diagnosis and treatment options for stomach motility disorders. Optical mapping has been used extensively in cardiac electrophysiology. Although optical mapping has a number of advantages relative to electrical mapping, optical signals are highly sensitive to motion artifact. We recently introduced a novel cardiac optical mapping method that corrects motion artifact and enables optical mapping to be performed in beating hearts. Here, we reengineer the method as an experimental tool to map gastric slow waves. METHODS: The method was developed and tested in 12 domestic farm pigs. Stomachs were exposed by laparotomy and stained with the voltage-sensitive fluorescence dye di-4-ANEPPS through a catheter placed in the gastroepiploic artery. Fiducial markers for motion tracking were attached to the serosa. The dye was excited by 450 or 505 nm light on alternate frames of an imaging camera running at 300 Hz. Emitted fluorescence was imaged between 607 and 695 nm. The optical slow wave signal was reconstructed using a combination of motion tracking and excitation ratiometry to suppress motion artifact. Optical slow wave signals were compared with simultaneously recorded bipolar electrograms and suction electrode signals, which approximate membrane potential. KEY RESULTS: The morphology of optical slow waves was consistent with previously published microelectrode recordings and simultaneously recorded suction electrode signals. The timing of the optical slow wave signals was consistent with the bipolar electrograms. CONCLUSIONS AND INFERENCES: Optical mapping of slow wave propagation in the stomach is feasible.